
z/VM
Version 7 Release 2

OpenExtensions User's Guide

IBM

SC24-6299-01

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
201.

This edition applies to Version 7.2 of IBM z/VM (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2020-09-08
© Copyright International Business Machines Corporation 1993, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xi

Tables.. xiii

About this Document... xv
Intended Audience... xv
Conventions Used in This Document... xv

Escape Character Notation... xv
Case-Sensitivity...xv
Typography..xv

Syntax, Message, and Response Conventions..xvi
Where to Find More Information... xviii

Links to Other Documents and Websites.. xix

How to Send Your Comments to IBM..xxi

Summary of Changes for z/VM OpenExtensions User's Guide............................. xxiii
SC24-6299-01, z/VM 7.2 (September 2020)...xxiii
SC24-6299-00, z/VM 7.1 (September 2018)...xxiii

Part 1. Setting Up OpenExtensions...1

Chapter 1. Setting Up OpenExtensions... 3
Understanding the POSIX Database Concepts..3

POSIX User Database... 3
POSIX Group Database...4
POSIX Set and Query Functions... 4
DIRPOSIX Utility... 5

Assigning POSIX User IDs to VM Users... 5
Defining POSIX User Groups.. 5
Assigning VM Users to POSIX User Groups... 5
Selecting Additional Security Features..6
Creating BFS File Spaces..6

Additional Considerations...6

Part 2. The OpenExtensions Shell...9

Chapter 2. An Introduction to the OpenExtensions Shell.. 11
The Shell Session... 11
The Shell Commands... 11
The Locale in the Shell... 12
Porting Yourself from a UNIX or AIX Environment..12
Interoperability.. 13

Parallels Between the CMS and Shell Environments...13
Scanning Files and Manipulating Strings... 14
Editing... 14
Job Control..14
Background Jobs.. 14
Programming...14

 iii

Data Management...15
Security...15

Chapter 3. Using the OpenExtensions Shell... 17
Using CMS...17
Understanding the 3270 Screen..17
Limitations For Display of Data On the Terminal...18
The Shell Run-time Requirements...18
Exiting the Shell..19
Getting Rid of a Hung Application..19
Understanding Code Page Conversion.. 19

Customizing the Square Brackets on Your Keyboard.. 20
When Do You Need to Convert between Code Pages?..20

Naming Files Using the POSIX Portable File Name Character Set..21
Default Escape character and LINEDEL... 21
Default CP Terminal Escape Character and the Shell..21
Default CP Terminal Line End Character and the Shell... 21

Chapter 4. Customizing the Shell.. 23
Customizing Your .profile... 23

Quoting Variable Values..24
Changing Variable Values Dynamically.. 24

Understanding Environment Variables.. 25
Customizing Your Shell Environment: The ENV Variable.. 27
Customizing the Search Path for Commands: The PATH Variable..27

Adding Your Working Directory to the Search Path... 28
Checking the Search Path Used for a Command... 29

Changing the Locale: The LC_ Variables..29
Setting Options for a Shell Session..29

Exporting Variables...30
Controlling Redirection...30
Preventing Wildcard Character Expansion...30
Displaying Input from a File... 30
Displaying Current Option Settings.. 30

Chapter 5. Working with Shell Commands... 31
Specifying Shell Command Options and Operands...31
Specifying Options with Accompanying Operands... 32
Help for Shell Command Usage... 32
Interrupting a Shell Command...32
Understanding Standard Input, Standard Output, and Standard Error..32
Redirecting Command Output to a File... 33
Redirecting Input from a File... 33
Redirecting Error Output to a File.. 33
Closing a File...34
Dumping Nontext Files to Standard Output.. 34
Setting Up an Alias for a Command... 34

Defining an Alias... 35
Redefining an Alias for a Session... 35
Setting Up an Alias for a Particular Version of a Command...35
Using Alias Tracking..36
Turning Off an Alias...37

Combining Commands... 37
Using a Semicolon (;).. 37
Using && or ||.. 38
Using a Pipe...38

Using Substitution in Commands...38
Using the find Command in Command Substitution Constructs... 39

iv

Characters That Have Special Meaning to the Shell... 40
Used with Commands...40
Used in File Names... 40
Redirecting Input and Output...41

Using a Special Character Without Its Special Meaning... 41
The Backslash (\).. 41
A Pair of Single Quotation Marks (' ').. 42
A Pair of Double Quotation Marks (" ")... 42

Using a Wildcard Character to Specify File Names... 42
The * Character... 42
The ? Character... 42
The Square Brackets []...43

Retrieving Previously Entered Commands.. 44
Using the Retrieve Keys..44
Retrieving Commands from the History File.. 44
Editing Commands from the History File... 45

Using Record-Keeping Commands.. 45
Finding Elements in a File and Presenting Them in a Specific Format... 46
Timing Programs.. 47
Online Help... 47

Example: Getting Help for OPENVM Commands... 48
Example: Getting Help for OSHELL cp... 49

Chapter 6. Writing Shell Scripts...51
Running a Shell Script.. 51
Using Variables... 52

Creating a Variable..52
Calculating with Variables.. 53
Exporting Variables...54
Associating Attributes with Variables.. 55
Displaying Currently Defined Variables..55

Using Positional Parameters — The $N Construct...55
Using Quotation Marks to Enclose a $N Construct in a Shell Script..57

Using Parameter and Variable Expansion..57
Using Special Parameters in Commands and Shell Scripts.. 60
Using Control Structures.. 61

Using test to Test Conditions..61
The if Conditional.. 62
The while Loop..64
The for Loop.. 64
Combining Control Structures.. 65

Using Functions.. 65

Chapter 7. Using Job Control in the Shell... 67
Running Several Jobs at the Same Time (Foreground and Background)... 67

Starting a Job in the Background with an Ampersand (&)...68
Moving a Job to the Background.. 68
Moving a Job to the Foreground...68

Checking the Status of Jobs...68
Using the jobs Command..69
Using the ps Command...69

Canceling a Job.. 69
Canceling a Foreground Job... 69
Canceling a Background Job.. 70

Stopping and Resuming a Job..70
Stopping a Foreground Job.. 70
Stopping a Background Job..70
Resuming a Stopped Job..70

 v

Delaying a Command... 71
Running a Job in the Background after Exiting... 71

Chapter 8. Running OpenExtensions Applications... 73

Chapter 9. Communicating with Other Users... 75
Sending Messages..75

To Another User.. 75
To a Distribution List...76
To a VM Operator.. 76

Receiving Messages from Other Users.. 76
Replying to Mail...77
Saving and Deleting Mail...77
Ending the mailx Program.. 78

Part 3. The File System.. 79

Chapter 10. An Introduction to the Byte File System...81
The Root File System and Mountable Byte File System..83
Directories.. 83
Files...84

Files Not in the BFS...84
Path and Path Name...84

Requirement for a Fully-Qualified Path Name... 85
Resolving a Symbolic Link in a Path Name...85
External Links..85

Using Commands to Work with Directories and Files... 86
Where You Can Enter a CMS Command... 87
Locking.. 88
External Links..88
Security for the File System..88

Chapter 11. Working with Directories... 89
The Working Directory..89
Displaying the Name of Your Working Directory... 89
Changing Directories.. 90

Using Notations for Relative Path Names.. 90
Creating a Directory..91

Using CMS... 91
Removing a Directory... 93

Using CMS... 93
Listing Directory Contents..94

Using CMS... 94
Comparing Directory Contents...96

Using the Shell.. 96
Finding a Directory or File.. 96

Using the Shell.. 96

Chapter 12. Working with Files... 99
Using an Editor to Create a File..99
Naming Files... 99

Processing in Uppercase and Lowercase.. 100
Deleting a File...100

Using CMS... 100
Using the Shell.. 100

Identifying a File by Its Inode Number... 101
Using CMS... 101

vi

Using the Shell.. 101
Creating Links...101

Using CMS... 101
Using the Shell.. 101
Creating a Hard Link... 101
Using CMS... 102
Using the Shell.. 102
Creating a Symbolic Link.. 102
Creating an External Link..103

Deleting Links...104
Using CMS... 104
Using the Shell.. 104

Renaming or Moving a File or Directory...104
Using CMS... 104
Using the Shell.. 104

Comparing Files..105
Using CMS... 105
Using the Shell.. 105

Sorting File Contents..106
Using CMS... 106
Using the Shell.. 106
Using Sorting Keys — An Example..108

Counting Lines, Words, and Bytes in a File..109
Using CMS... 109
Using the Shell.. 109

Searching Files by Using Pattern Matching... 109
Using CMS... 109
Using the Shell.. 109
Patterns...110
Regular Expression...111

Browsing Files.. 111
Browsing Files Without Formatting..111
Browsing Files with Formatting..111

Simultaneous Access to a File... 112
Backing Up and Restoring Files: The Options... 112
Using cpio to Back Up and Restore Files...113

Backing Up a Complete Directory.. 113
Restoring a Complete Directory from a VM File...113
Working with a Compressed Archive... 113
Viewing the Contents of an Archive... 114
Restoring Selected Files from an Archive.. 114

Using tar to Back Up and Restore Files... 114
Backing Up a Complete Directory into a CMS Record File.. 115
Restoring a Complete Directory from a CMS Record File..115
Viewing the Contents of an Archive... 115
Restoring Selected Files from an Archive.. 115
Restoring Files Interactively.. 116
Appending to an Archive.. 116
Backing Up Files Created over a Certain Number of Days.. 116

Using pax to Back Up and Restore Files..116
Backing Up a Complete Directory into a CMS Record File.. 116
Restoring a Complete Directory from a CMS Record File..117
Working with a Compressed Archive... 117
Viewing the Contents of an Archive... 117
Specifying a Format for Backup... 118
Restoring Selected Files from an Archive.. 118
Restoring All But Selected Files from Backup... 118
Converting Between Code Pages... 118

 vii

Restoring an ASCII Archive File That Has Component Archive Files..118

Chapter 13. Handling Security for Your Files..121
Default Permissions Set by the System...121
Changing Permissions for Files and Directories..122

Using CMS... 122
Using the Shell.. 123
Using a Symbolic Mode to Specify Permissions.. 123
Using Octal Numbers to Specify Permissions with the Shell.. 124
Position 1.. 124
Positions 2, 3, and 4... 125

Displaying File and Directory Permissions.. 125
Using CMS... 126
Using the Shell.. 126

Setting the File Mode Creation Mask...127
Using CMS... 127
Using the Shell.. 127

Changing the Owner ID or Group ID Associated with a File... 128
Using CMS... 128
Using the Shell.. 128

Temporarily Changing the User ID or Group ID during Execution..128
Using CMS... 129
Using the Shell.. 129

Chapter 14. Editing Files... 131
Using XEDIT to Edit a BFS File...131

Using XEDIT.. 131
Support for Doublebyte Characters... 132
Code Page Conversion..132
Typing Tabs using XEDIT..132
Preserving Trailing Blanks in Files... 132
Working with Lowercase or Mixed-Case Files... 133
Accessing a File to Edit...133
Working with Other Files While Editing a File.. 133
Edit Recovery.. 134

Using the ed Editor...134
Using the Shell.. 135
Creating and Saving a Text File.. 135
Editing an Existing File..135
Identifying Line Numbers and Changing Your Position in the Buffer..136
Appending One File to Another.. 136
Displaying the Current Line in the Edit Buffer..137
Changing a Character String...137
Inserting Text at the Beginning or End of a Line..138
Deleting Lines of Text... 138
Changing Lines of Text..138
Inserting Lines of Text..139
Copying Lines of Text..139
Moving Lines of Text... 140
Undoing a Change...140
Entering a Shell Command While Using ed..140
Ending an ed Edit Session.. 140
Default Permissions..140

Using sed to Edit a BFS File... 140
Using the Shell.. 140

Chapter 15. Printing Files..143
Formatting Files for Online Browsing or Printing.. 143

viii

Using the Shell.. 143
Printing Requests in Shell Scripts.. 143

Printing with the lp Command... 144
Using the Shell.. 144

Printing with CMS Commands... 144
Using CMS... 144

Chapter 16. Copying Files... 145
Copying a CMS Record File into a BFS File..145

OPENVM PUTBFS..146
Copying a BFS File to a CMS Record File...147

OPENVM GETBFS..147
Copying a BFS File to Another BFS File... 148

Chapter 17. Transferring Files between Systems.. 149
Transferring to the Byte File System... 149
Transferring a File to the Workstation...149
Transporting an Archive File on Tape or Diskette... 149

Putting an Archive File into a Byte File System... 150
Sending an Archive File to Others.. 150

Appendix A. DIRPOSIX Utility.. 153

Appendix B. OpenExtensions Shell Command Summary..................................... 161
General Use... 161
Controlling Your Environment... 161
Managing Directories...162
Managing Files... 163
Printing Files.. 164
Computing and Managing Logic.. 164
Controlling Processes..165
Writing Shell Scripts.. 165
Developing or Porting Application Programs.. 165
Communicating with the System or Other Users..166
Working with Archives... 166

Appendix C. Using awk.. 167
Data Files... 167

Records...167
Fields.. 168

The Shape of a Program.. 168
Simple Patterns..168
Using Blanks and Horizontal Tabs... 169
Applying More Than One Instruction...169
Assigning Values to Variables.. 170
String Values...170
Numeric Values.. 170
Using the print Action for Output...171

Running awk Programs..171
The awk Command Line...171
Program Files... 172
Sources of Data.. 172

Operators... 173
Comparison Operators...173
Arithmetic Operators... 173
Compound Assignments..175
Increment and Decrement Operators... 175

 ix

Matching Operators..175
Multiple-Condition Operators.. 175

Regular Expressions.. 176
Pattern Ranges.. 178
Using Special Patterns...178
Built-in Variables... 179

Built-in Numeric Variables...179
Built-in String Variables... 180

Statements and Loops...181
The if Statement...182
The while Loop... 182
The for Loop... 182
The next Statement..182
The exit Statement...182

Functions... 182
Arithmetic Functions..183
String Manipulation Functions... 183
User-Defined Functions... 185
Passing an Array to a Function...185
The Getline Function.. 185

Running System Commands... 185
Controlling awk Output..186

Formatting the Output... 186
Placeholders...187
Escape Sequences... 188

Appendix D. The Format of Archive Files: cpio and tar...191
cpio Format.. 191
tar Format.. 192

Description of the Header Fields... 193

Appendix E. Code Pages and the POSIX Portable Character Set.......................... 195
Latin 1/Open System Interconnection Code Page 01047 (IBM-1047)... 196
POSIX Portable Character Set 00103...197
U.S. APL Code Page 00293... 198

Appendix F. Escape Sequences.. 199
Escape Sequences for Portable Characters Not on Your Keyboard...199
Escape Sequences for Control Characters... 199

Notices..201
Programming Interface Information...202
Trademarks..202
Terms and Conditions for Product Documentation.. 203
IBM Online Privacy Statement.. 203
Acknowledgments... 204

Bibliography..205
Where to Get z/VM Information.. 205
z/VM Base Library..205
z/VM Facilities and Features... 207
Prerequisite Products..208
Additional Publications..208

Index.. 209

x

Figures

1. Parallels Between the CMS and Shell Environments... 14

2. A Sample .profile... 23

3. The Byte File System...81

4. Comparison of CMS Record Files and the Byte File System.. 82

5. Organization of the Byte File System..83

6. Creating a New Directory.. 93

7. A Hard Link: A New Name for an Existing File..102

8. A Symbolic Link: A New File..103

9. An External Link: A New File...103

10. A Sample File: comics.lst..107

11. The hobbies File..167

12. Latin 1/Open System Interconnection Code Page 01047 (IBM-1047).. 196

13. POSIX Portable Character Set 00103.. 197

14. U.S. APL Code Page 00293...198

 xi

xii

Tables

1. Examples of Syntax Diagram Conventions...xvi

2. Built-in Variables... 25

3. Three-Digit Permissions Specified in Octal..125

4. Sample XEDIT Subcommands..133

5. cpio Archive File: ASCII Header... 191

6. cpio Archive File: Binary Header...192

7. tar Archive File: UNIX-Compatible Format...192

8. tar Archive File: USTAR Format.. 193

9. Portable Characters: Escape Sequences... 199

10. Control Characters: Escape Sequences... 200

 xiii

xiv

About this Document

This document provides information for setting up the IBM® z/VM® OpenExtensions™ facilities and using
the OpenExtensions shell. This information helps users use the functions specified in the POSIX.2
standard (IEEE Std 1003.2-1992 and ISO/IEC 9945-1992 International Standard; Portable Operating
System Interface [POSIX] Part 2: Shell and Utilities). For convenience, other support services associated
with OpenExtensions are also described.

This document describes how to use the OpenExtensions shell, the file system, and communication
services. Using this information, you will be able to:

• Enter shell commands that request services from the system.
• Write shell scripts using the shell programming language; a shell script can be as powerful as a C/C++

language program.
• Run shell scripts and C/C++ language programs interactively (in the foreground), in the background, or

in batch.
• Switch easily between the shell and CMS.
• Move CMS record file into the file system, or move files from the byte file system (BFS) into CMS.
• Enter shell commands or CMS commands from the shell command line.
• Use XEDIT to create or to edit a file in the file system.
• Manage your file system.

Intended Audience
Information on setting up OpenExtensions facilities is provided for systems programmers and system
administrators. Information on using the OpenExtensions shell is provided for application programmers
and end users.

Conventions Used in This Document
The following conventions are used in this document.

Escape Character Notation
When you see the following notation:

enter <EscChar-C>

it should be interpreted as:

type the EscChar, which by default is the ¢ (cent sign) and then type the C character.
Press ENTER after typing these characters.

Note: To change the escape character to something other than the cent sign, see the BPX1TSX service in
z/VM: OpenExtensions Callable Services Reference.

Case-Sensitivity
The OpenExtensions shell commands and CMS OPENVM commands are case-sensitive and distinguish
characters as either uppercase or lowercase. Therefore, FILE1 is not the same as file1.

Typography
The following typographic conventions are used:

© Copyright IBM Corp. 1993, 2020 xv

BOLD
Bold and uppercase is used for all command names (OPENVM SHELL) except the shell commands,
statements (CLINKNAME), and references to a key that you would press (ENTER).

bold
Bold and lowercase is used for shell commands (make).

variable
Lowercase italics is used to indicate a variable.

VARIABLE
Uppercase italics is used to indicate a shell environment variable.

example font
Example font is used to indicate file specifications (.profile, XEDIT PROFILE), directory names
(/usr/lib/nls/charmap), and verbatim user input.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xvi.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or constant in
uppercase letters, lowercase letters, or any combination.
However, some applications may have additional
conventions for using all-uppercase or all-lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

xvi About this Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Symbols

You must specify these symbols exactly as they appear in
the syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is on
the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this
example, you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

About this Document xvii

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
For detailed reference information on OpenExtensions shell commands and utilities and CMS OPENVM
commands, see the z/VM: OpenExtensions Commands Reference.

For more extensive information on using the lex, yacc, and make utilities, see z/VM: OpenExtensions
Advanced Application Programming Tools.

xviii About this Document

For a list of other z/VM publications, see “Bibliography” on page 205.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

About this Document xix

xx z/VM: z/VM 7.2 OpenExtensions User's Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem

Do not use the feedback method. Instead, do one of the following:

• Contact your IBM® service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (www.ibm.com/vm/service).
• Go to IBM Support Portal (www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1993, 2020 xxi

http://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
http://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
http://www.ibm.com/vm/service/
http://www.ibm.com/support/entry/portal/Overview/

xxii z/VM: z/VM 7.2 OpenExtensions User's Guide

Summary of Changes for z/VM OpenExtensions User's
Guide

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

SC24-6299-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM® 7.2.

SC24-6299-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1993, 2020 xxiii

xxiv z/VM: z/VM 7.2 OpenExtensions User's Guide

Part 1. Setting Up OpenExtensions

© Copyright IBM Corp. 1993, 2020 1

2 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 1. Setting Up OpenExtensions

This chapter describes the tasks involved in setting up the OpenExtensions facilities in z/VM that allow
users to run POSIX applications. These tasks involve assigning POSIX security values to users and setting
up the OpenExtensions Byte File System (BFS). Any CMS user can run a POSIX application, but to assure
proper access to resources and to allow the management of POSIX data, the tasks described in this
chapter must be performed. These tasks involve specifying certain system configuration file statements
and CP directory control statements that are described in z/VM: CP Planning and Administration.

Understanding the POSIX Database Concepts
Two important tasks involved in enabling an installation to make full use of POSIX are:

• Setting up the POSIX user database
• Setting up the POSIX group database

If an External Security Manager (ESM) is installed, it may be capable of managing these databases and
providing CP with information from them upon request. If not, then CP will obtain this information from
the CP user directory.

POSIX User Database
The user database contains POSIX information about the users in the system. For each user, it contains at
least the following information:
User name

This is the login name that identifies a POSIX user. It is analogous to a user's user ID on a VM system
and is the lowercase version of the VM user ID.

User ID (UID)
This is a numeric identifier for the POSIX user. It will be the user's initial real UID, effective UID and
saved set-UID when the user logs on. It identifies the user to the system when certain POSIX
functions are being handled, including authorization checks before file access and program execution.
Even though multiple users are permitted to have the same UID, this is not recommended, because
UIDs are used for various authorizations. If multiple users have the same UID, individual
accountability may be lost.

A UID of 0 identifies a user as one with "appropriate privileges". POSIX permits processes with
appropriate privileges to perform additional or different functions in certain situations. Take care
when assigning a UID of 0 to a user. It may be appropriate for certain service virtual machines.

If users are not assigned a UID in the user database, they may each be assigned the same default
value by the system. This is what happens when the user database information is contained in the CP
directory. If an ESM provides this information, it may behave differently. If multiple users have the
same UID, each of them will appear the same to POSIX functions that reference these UIDs. As
previously mentioned, this is not recommended.

Primary group id (GID)
This identifies a POSIX group defined in the POSIX group database. It will be the user's initial real
GID, effective GID and saved set-GID when the user logs on. A user's group affiliation is referenced
when certain POSIX functions are being handled, including authorization checks before file access
and program execution.

If users are not assigned a GID in the user database, they may each be assigned the same default
value by the system. In this case, all of these users will appear the same to POSIX functions that
reference these GIDs. This could be used to permit all these users to access or run certain files, or it
could be used to deny all "unregistered" users from accessing or running any POSIX file.

Setting Up

© Copyright IBM Corp. 1993, 2020 3

Initial working directory
This is the user's home directory. Unless overridden by the OPENVM SET DIRECTORY command, it
will be the current directory when a user first enters the POSIX environment.

Initial user program
This is the name of an application. It is typically a shell, a program that accepts commands from the
user and supervises the execution of other programs. This is the program that will be invoked by the
OPENVM SHELL command.

In addition to the above information required by POSIX, the following information may also be contained
in the user database:
File system root

This is the user's root file system. Unless overridden by the OPENVM MOUNT command, it is the Byte
File System that will be mounted as the root file system when a user first enters the POSIX
environment.

When not provided by an ESM, most of the user database information is taken from POSIXINFO directory
control statements in the individual users' directory entries. Because some of the database information
may consist of very long, mixed-case character strings with embedded blanks and quotation marks, it
may be necessary to specify multiple POSIXINFO statements or continue a single statement across
multiple records in the user directory file.

POSIX Group Database
The group database defines the POSIX groups that exist on the system. For each group, it contains at
least the following information:
Group name

This is the name of the POSIX group.
Group ID (GID)

This is a numeric identifier for the POSIX group. Multiple groups with the same GID are permitted to
be defined. Care should be taken when doing this, because it may lead to unexpected results during
certain POSIX functions.

Member list
This is a list of all the users who are members of the POSIX group.

When not provided by an ESM, the group database information is taken from POSIXGROUP and
POSIXGLIST directory control statements.

POSIX includes the concept of supplementary groups. Some of the groups of which a user is a member
are defined to be that user's supplementary groups. This list of groups is referenced when certain POSIX
functions are being handled, including authorization checks before file access and program execution.
When not provided by an ESM, this list is derived from the user's POSIXGLIST and POSIXINFO directory
control statements.

POSIX Set and Query Functions
Certain set and query functions exist for the database and POSIX process information. Controls are
provided to allow an installation to permit or prohibit these on a system-wide or individual user ID level.
The USER_DEFAULTS POSIXOPT statement in the system configuration file can be used to specify the
system default authorization for certain POSIX query and set functions. The POSIXOPT directory control
statement can be used to specify these POSIX authorizations for a single user.

This support may require the use of continued directory control statements and mixed-case operands on
directory control statements. Some directory statements are permitted to be continued across multiple
records in the source directory file. Certain operands on some statements are case-sensitive, and their
case is preserved by the DIRECTXA utility and the CP functions that return them to a guest program. Due
to these characteristics, care must be taken when editing a directory file containing these statements and
operands.

Setting Up

4 z/VM: z/VM 7.2 OpenExtensions User's Guide

DIRPOSIX Utility
The DIRPOSIX utility is provided to aid the system programmer in the assigning of UIDs and GIDs to the
users. It will aid in the migration to a POSIX environment. Use DIRPOSIX to add POSIX information to a
user directory source file. It performs the following functions:

• Assigns a unique UID to each user ID that has no UID specification and is not listed in the DIRPOSIX
USEREXCL file

• Assigns a primary group to each user ID that has no primary group specification and is not listed in the
DIRPOSIX USEREXCL file

• Adds the standard “system” group definitions, if they do not already exist
• Adds the standard “system” user definitions, if they do not already exist

DIRPOSIX provides a mechanism for reserving installation-specified UIDs. It will not assign any UIDs
listed in the DIRPOSIX UIDEXCL file.

For more information, see Appendix A, “DIRPOSIX Utility,” on page 153.

Assigning POSIX User IDs to VM Users
This task involves assigning a UID to each user who will be using POSIX applications. While each user's
UID need not be unique, you should make each unique unless you have a specific reason to do otherwise.
Users with the same UID will be seen as having the same access to files in BFS. The only UID with special
meaning is the UID of 0, which denotes a superuser. Such a user can access any file in BFS and perform
other restricted functions. Only trusted users should be assigned a UID of 0.

If an ESM is installed to maintain the POSIX user database, refer to the ESM documentation for
instructions on assigning UIDs. Otherwise, the UIDs are assigned in user entries in the CP directory. Any
user not explicitly assigned a UID will automatically be assigned the default UID of 4294967295
(X'FFFFFFFF').

Defining POSIX User Groups
This task involves assigning a GID to a group name. If an ESM is not installed to handle the POSIX group
database, this is done in the global definition section of the CP directory with a POSIXGROUP statement.
Duplicate group names are not permitted, but multiple groups may have the same GID. Groups that have
the same GID are considered to be the same when performing file access permission checking. However,
they are treated as different groups during database queries such as getgrnam() and getgrgid(). In
addition, certain queries that require a GID as input may return information about a group other than the
intended one. For these reasons, you must take care when assigning the same GID to more than one
group.

Assigning VM Users to POSIX User Groups
The assignment of users to user groups should be based on common access to data. The way to share
BFS files with other users is to give selected file access permissions to the members of the file's user
group. User groups define the set of users that have common file use needs.

If an ESM is installed to maintain the POSIX group database, refer to the ESM documentation for
information on how to define groups. Otherwise, a user's primary group is assigned by specifying a group
name or GID on a POSIXINFO statement in the user's CP directory entry. The user automatically becomes
a member of the specified group. A user can be assigned membership in multiple groups by specifying
multiple group names or GIDs on the POSIXGLIST statement. To avoid ambiguity in the event that
multiple groups are defined with the same GID, it is recommended that groups be specified by group
name rather than by GID.

Setting Up

Chapter 1. Setting Up OpenExtensions 5

Some commands return the name of the user group. These commands include the OPENVM LISTFILE
command provided by CMS and the ls command provided by the OpenExtensions Shell and Utilities. The
group names are defined in the global definitions section of the CP directory using the POSIXGROUP
statement.

Selecting Additional Security Features
Additional controls are provided that limit the use of some POSIX features on a system-wide or per-user
basis. There is a system configuration file statement that defines attributes and permissions for all users
on the system. The QUERYDB specification defines whether the users are ALLOWed or DISALLOWed to
query other users' POSIX database information. The EXEC_SETIDS specification defines whether users
are ALLOWed or DISALLOWed to have their POSIX IDs changed on behalf of a POSIX exec() function call.

These values can be overridden for a user by the POSIXOPT directory statement. The EXEC_SETIDS
option allows the user to execute set-ID programs. This is necessary to run certain programs. The
QUERYDB option allows the user to obtain information about groups as well as other users' database
information. This is useful in some POSIX functions. The SETIDS option specifies whether the user is
authorized to set other users' POSIX IDs. SETIDS should be used only for the BFS servers.

QUERYDB and EXEC_SETIDS DISALLOWed values are ignored for the users with an effective UID of 0. A
UID of 0 indicates a user has appropriate privileges. This user is known as a superuser.

The security concern with allowing a user to execute set-ID files is that the user acquires the authority
associated with the file. A malicious user could interrupt a program and access data that would normally
not be available to this virtual machine.

There are several implications that should be noted if you choose to make use of these additional
controls:

• Any user who is not allowed to execute set-ID programs will not be able to use the mailx utility
provided with the OpenExtensions Shell and Utilities. This utility allows users to exchange notes in a
UNIX®-like fashion.

• Any user who is not allowed to query the user database information for other users will not be able to
use all of the options of the ls utility, which is also provided with the OpenExtensions Shell and Utilities,
to find user and group name information related to files.

Creating BFS File Spaces
At the center of OpenExtensions is BFS. It provides the file system interface and semantics required by
POSIX. BFS data is managed by a CMS file pool server. A file pool server can manage either SFS or BFS
data, or both. For a detailed description of how to set up BFS and how to organize the file system view
provided by one or more file pool servers, see z/VM: CMS File Pool Planning, Administration, and
Operation.

In general, these steps involve allocating storage space to one or more file spaces that are to contain BFS
data. These steps define a standard topmost file tree in the system-provided file pool, VMSYS. Once the
file system has been set up, you can add the FSROOT value to the POSIXINFO statement of individual
users' CP directory entries. The FSROOT value specifies the file system (BFS file space) that should be
mounted (made available as the root of the user's directory tree) by CMS when the user starts using
OpenExtensions services.

Additional Considerations
The following are additional consideration for working with BFS:

• Directory MAXCONN value

A user virtual machine communicates with the BFS server virtual machine over Advanced Program to
Program Communication (APPC) connections. Two APPC paths are used by each POSIX process during
its execution and each mounted file system also requires two paths. This means that the user should

Setting Up

6 z/VM: z/VM 7.2 OpenExtensions User's Guide

have a MAXCONN value in the user's CP directory entry of at least 64, and perhaps more if the user's
directory tree is composed of elements managed by many filepools.

• File access in a distributed environment

If the BFS server and the user who wishes to access BFS files reside on different VM images, any of the
three VM communications servers can be used to provide the connectivity between the systems.
However, the POSIX security data provided by CP and sent to the server may be different depending on
the communications server used:

– If the systems are in either a Communication Services (CS) or Transparent Services Access Facility
(TSAF) collection (that is, the systems are connected by and running either the Inter-System Facility
for Communication (ISFC) or TSAF), the POSIX security values provided are those of the POSIX
process that initiated the connection.

– If the connection is with APPC/VM VTAM® Support (AVS), the values provided are those of the
security user at the target system.

• File processing in a distributed environment

If the BFS server and the user wishing to execute a set-ID file reside on two different VM images, those
images must be in the same CS collection (that is, the images must be running and connected by ISFC),
and the system administrator must ensure that:

– There is a flat name space for the UIDs and GIDs across the collection. That is, every UID value in the
collection must represent a distinct user or set of users, as must every GID.

– The server where BFS resides is defined as a global resource.
– All systems in the path between the two systems, as well as the server and requestor systems, must

be running a version of CP that supports POSIX.

Setting Up

Chapter 1. Setting Up OpenExtensions 7

Setting Up

8 z/VM: z/VM 7.2 OpenExtensions User's Guide

Part 2. The OpenExtensions Shell

© Copyright IBM Corp. 1993, 2020 9

10 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 2. An Introduction to the OpenExtensions
Shell

The OpenExtensions shell is modeled after the UNIX System V shell with some of the features found in
the KornShell. As implemented in OpenExtensions, this shell conforms to POSIX standard 1003.2, which
has been adopted as ISO/IEC International Standard 9945-2: 1992.

The shell is a command processor that you use to:

• Call shell commands or utilities that request services from the system.
• Write shell scripts using the shell programming language.
• Run shell scripts and C/C++ language programs interactively (in the foreground) or in the background,

The Shell Session
A shell user is a CMS user who has logged onto z/VM and has a CMS session. From the CMS command
line, the user enters the OPENVM SHELL command. This starts the OpenExtensions Shell, making all the
shell commands and utilities available. The shell user can still invoke VM commands with the cms
command.

There are two categories of shell user: superuser and user. The superuser has a UID of 0, can do anything
a user can, has special authority to perform certain additional tasks (such as mounting and unmounting a
file system), and can access all OpenExtensions services and the files in the byte file system.

The shell user can use the su command to switch to superuser authority. To run su, your effective UID
must be 0, or your effective GID must be 0, or one of your supplementary GIDs must be 0.

The Shell Commands
The OpenExtensions shell provides commands (and utilities) that give the user an efficient way to request
a range of services.

POSIX 1003.2 distinguishes between a command (a directive to a shell to perform a specific task) and a
utility (the name of a program callable by name from a shell). In this document, the term command
includes both kinds of request.

Shell commands often have options (also known as flags) that you can specify, and they usually take an
operand—such as the name of a file or directory. The format for specifying the command begins with the
command name, then the option or options, and finally the operand, if any. For example:

ls -a myfiles

ls is the command name, -a is the option, and myfiles is the operand.

This book describes various commands you can use to perform certain tasks. Typically, this discussion
highlights only certain functions of the command. For complete information about each command and all
its options, always refer to z/VM: OpenExtensions Commands Reference.

Appendix B, “OpenExtensions Shell Command Summary,” on page 161 lists OpenExtensions commands
and utilities by the task a user might want to perform. Similar tasks are organized together.

An Introduction

© Copyright IBM Corp. 1993, 2020 11

The Locale in the Shell
A locale specifies cultural and language characteristics of the CMS OpenExtensions system environment
for an application program. Locale affects collation, date and time conventions, numeric and monetary
formats, program messages, and yes and no prompts.

The OpenExtensions shell and utilities support any locale generated with code pages IBM-1047,
IBM-1027, or IBM-939.

The shell always starts in the POSIX locale, but you can change the locale. See “Changing the Locale: The
LC_ Variables” on page 29 for information on changing the locale for the shell and utilities.

Porting Yourself from a UNIX or AIX Environment
If you come from a UNIX or AIX® background, you will encounter some differences when you begin to use
the OpenExtensions shell. In particular, the 3270-type terminal interface may surprise you. For example:

OpenExtensions Shell Behavior For More Information

The 3270 interface operates in line mode. You type data on a
command line and no data is transmitted until you press the
<Enter> key.

“Understanding the 3270 Screen” on
page 17

Instead of using a <Ctrl> key to type control sequences (for
example, <Ctrl-D>), you use an escape-key sequence.

Appendix F, “Escape Sequences,” on
page 199

Certain escape characters are not recognized nor acted upon
when they appear within data displayed on the terminal.

“Limitations For Display of Data On the
Terminal” on page 18

The OpenExtensions shell uses the EBCDIC code pages
IBM-1047 and IBM-1027 for singlebyte data. Any singlebyte
data moved into the byte file system (BFS) from an ASCII
workstation and some data from an CMS country-extended
code page will need to be converted to the code page
IBM-1047.

“Understanding Code Page Conversion”
on page 19

The left and right square brackets [] have different
hexadecimal encodings on the shell-supported code pages
from what they have on most workstation keyboards (unless
you are using an APL character set). To work around this, you
have several choices.

“Understanding Code Page Conversion”
on page 19

To view help for a CMS or shell command, use the z/VM HELP
facility. This will allow you to view individual CMS help files or
the task panels where you can pick which help to view.

“Online Help” on page 47

In AIX, entering the exclamation point (!) is the equivalent of
typing the history command. In the OpenExtensions shell,
you use the history command or the Retrieve function key.

“Retrieving Previously Entered
Commands” on page 44

c89 is available, but not cc. Also, c++ is available as cxx. The c89/cxx description in the z/VM:
OpenExtensions Commands Reference

You can use the vi editor at the workstation, but not in the
OpenExtensions shell. Working at the host, you can edit BFS
files using XEDIT or the ed editor.

Chapter 14, “Editing Files,” on page 131

An Introduction

12 z/VM: z/VM 7.2 OpenExtensions User's Guide

OpenExtensions Shell Behavior For More Information

Many UNIX systems support an executable text file that
contains a "magic" number. This is a text file beginning with
#!pathname. For example, you could write a shell script and
indicate what shell to use with the first line:

#!/bin/ksh

The OpenExtensions shell does not
support this.

The mount and unmount commands are available only in
CMS, not in the OpenExtensions shell.

“Using Commands to Work with
Directories and Files” on page 86

Interoperability
A shell user has access to and can take advantage of the underlying VM system. The shell itself is a CMS
application that provides its own command environment. It is started by the user issuing the OPENVM
SHELL command. From the shell environment, the user can execute any VM command or application
residing in the CMS file system by using the cms command. The other major areas of interaction between
the OpenExtensions facilities and the base CMS environment are:

• From the CMS environment, OpenExtensions applications that reside in the CMS file system can be
invoked directly by name. To use an OpenExtensions application that resides in BFS, the user invokes it
indirectly by issuing the OPENVM RUN command.

• Data can be copied between the CMS file system and byte file system (BFS) by using the OPENVM
GETBFS and OPENVM PUTBFS commands. These commands allow for record-to-byte-stream and code
page conversion.

• REXX execs can call shell commands through the OPENVM RUN command.
• REXX execs can call OpenExtensions applications through the OPENVM RUN command, or if they reside

in the CMS file system, directly by name.

Parallels Between the CMS and Shell Environments
An interactive user can make use of both shell and CMS facilities. Programmers whose primary interactive
environment is a UNIX or AIX workstation find the OpenExtensions shell programming environment
familiar. Those whose primary computing environment is CMS can do much of their work in that
environment.

An Introduction

Chapter 2. An Introduction to the OpenExtensions Shell 13

Figure 1. Parallels Between the CMS and Shell Environments

Scanning Files and Manipulating Strings
The shell programming environment provides function similar to the CMS environment with its REXX
execs.

REXX is a high-level interpreted language that enables you to write programs in a clear and structured
way. You can use REXX to write programs called REXX programs, or REXX execs, that perform given tasks
or groups of tasks. You can run REXX programs that call OpenExtensions services in CMS, in the shell
environment, or from a C/C++ program. For more information about writing REXX programs, see z/VM:
REXX/VM User's Guide and z/VM: REXX/VM Reference.

In the OpenExtensions shell, command processing is similar to command processing for execs. You can
write executable shell scripts (a sequence of shell commands stored in a text file) to perform many
programming tasks. With its commands and utilities, the shell provides a rich programming environment.

Editing
In CMS, you edit OpenExtensions byte file system (BFS) files using XEDIT.

Job Control
In the shell, you use the ps command or the jobs command to check the status of a job, and you use the
kill command to end a job before it completes.

Additionally, in the shell you can use the <EscChar-Z> sequence to stop, or suspend, a foreground job,
and you can then enter the bg command to run it in the background or the fg command to start it back up
in the foreground.

Background Jobs
In CMS, you can write a background job and submit it to the CMS batch facility.

Programming
In CMS or in the shell, the c89 or cxx command compiles and builds an OpenExtensions C/C++ program,
creating an executable file. In the shell, the make command is available for maintaining source and object
files, and lex and yacc are available for developing applications.

An Introduction

14 z/VM: z/VM 7.2 OpenExtensions User's Guide

Data Management
In CMS, the storage administrator uses the Shared File System (SFS) to automatically back up and archive
BFS. There is no facility for backing up individual files.

In the shell, you can use tar, cpio, and pax to read or write an archive file in the file system. There is no
automatic backup in the shell.

Archive files can be copied from a BFS directory to a tape or from a tape to a BFS directory using the
OPENVM PARCHIVE command.

Security
The system programmer defines an OpenExtensions shell user by assigning a user a POSIX user ID (UID)
and POSIX group ID (GID). The UID and GID are numeric values associated with a VM user ID and set in
the CP user directory when a user is authorized to use OpenExtensions services. The system uses the UID
and GID to identify the files and processes that a user runs. The UID identifies a user of OpenExtensions
services. The GID is a unique number assigned to a group of related users.

As a user, you can control read, write, and execute access to your files by other users in your group or
outside of your group, by setting the permission bits associated with the files.

An Introduction

Chapter 2. An Introduction to the OpenExtensions Shell 15

An Introduction

16 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 3. Using the OpenExtensions Shell

Using CMS
CMS is the interactive and program execution environment provided by VM. CMS reads commands from
the terminal and executes the appropriate programs. These programs can in turn execute other programs.
Users access CMS through 3270 displays or from workstations through a 3270 emulation application. The
OpenExtensions shell and its utilities are CMS application programs. The shell itself is a special kind of
CMS application that provides an interactive command environment of its own.

The CMS user issues the command OPENVM SHELL to invoke the shell. On many systems, the system
administrator will have tailored the CMS initialization process so that this command is executed
automatically, thus placing the user in the shell environment upon logon.

Understanding the 3270 Screen
The VM terminal interaction is not a keystroke-reactive environment as is usually the case with UNIX
systems. Keystrokes are not read until the ENTER key or one of the function keys is pressed. Similarly,
the ALT and CTRL keys cannot be used in combination with other keys to generate signals or other input.

This is the typical appearance of the VM screen in CMS line mode:

$
ls -l
total 104
-rw-r--r-- 1 bin bin 1071 May 3 01:18 mailx.rc
-rw-r--r-- 1 bin bin 1457 May 3 01:18 profile.sample
drwxr-xr-x 1 hal system 0 May 3 01:18 samples
-rwxr-xr-x 1 bin bin 5007 May 3 01:18 startup.mk
-rw-r--r-- 1 bin bin 11681 May 3 01:18 yylex.c
-rw-r--r-- 1 bin bin 20942 May 3 01:18 yyparse.c
$
id
uid=254(farrell) gid=517(DEPTG37)
$

 RUNNING GDLVM7

At the bottom of the screen, where the cursor can be seen, is the command line. This "line" actually wraps
around to include the bottom two lines on the screen. This is where commands are entered and prompts
are answered. This is also referred to as the input area.

Commands that are entered on the command line are passed to the shell for processing. However, if one
of the CMS immediate commands (for example, HX or HI) is entered at the beginning of the command line
it is interpreted as an immediate command and is not passed to the shell.

Above the command line and continuing to the top of the screen is the output area. This is where the shell
prompt is written, command input is echoed and responses are displayed. Nothing can be typed in this
area.

In the lower right corner is the status area. This is at the end of the command line area and is used by the
system to tell the user about the status of the screen. It includes two parts; the first is the screen state
and the second is the system ID. The screen state changes regularly to assist the user in understanding
what is happening in the CMS session. There are five screen states that can be displayed.
Running

The Running state means that the shell is executing and commands can be entered.

Using the Shell

© Copyright IBM Corp. 1993, 2020 17

More...
When the output area is full, this state is displayed. This indicates that the screen should be cleared
so more output can be displayed. You can clear it by pressing the CLEAR or PA2 key. The PA2 key will
clear the output area but leave the input area intact. The CLEAR key will clear both the input and
output areas. If you do nothing the output area will be cleared after a period of time defined by your
system administrator. This period is usually about 30 seconds. If you press the ENTER key when this
status is displayed, the status will change to HOLDING and the screen will not be cleared until you
explicitly clear it.

Holding
This means you pressed ENTER in response to a More…. Press CLEAR or PA2 to clear the screen.

Not Accepted
The system is busy (generally with work requested of the z/VM Control Program component) and
cannot process your input. You will most likely see this only if you issue Control Program commands
from the shell. Wait until the previously-entered command completes and then reenter your
command. This NOT ACCEPTED status will be displayed for only three seconds.

VM READ
The virtual machine is attempting to perform a line-mode read from the virtual console. The user must
supply a line of input and press ENTER. When ENTER is pressed, the virtual machine returns to
Running state.

The second part, the system ID, does not change. It is generally used to identify the name of the node in
the network by which this system is known.

CMS can be run in a different mode in which the output area is actually both an input and output area and
in which there are no screen states. This is called CMS fullscreen mode. This document assumes the user
is running in CMS line mode, as described above. Users interested in running in CMS fullscreen mode
should consult z/VM: CMS User's Guide. Note, however, that when the shell is running in CMS fullscreen
mode, the status window will display Running a Command and the message indicator will not be
accurate.

Limitations For Display of Data On the Terminal
The following escape characters are not recognized nor acted upon when they appear within data
displayed on the terminal:

• \a - sounding of printer bell
• \f - formfeed
• \v - vertical tag
• \b - backspace

Many utilities have options, for example the -f option of the pr utility, that makes it possible to include
these characters in output displays and files.

The lack of proper display of these characters does not indicate a lack of utility support or the omission of
the escape characters in the file or display.

The Shell Run-time Requirements
The OpenExtensions shell commands and utilities are all C/C++ applications and as such require the C/C+
+ run-time library to be available on an accessed minidisk or SFS directory. SCEERUN LOADLIB must also
be in the GLOBAL LOADLIB list. To facilitate this, the OPENVM SHELL command automatically
establishes the C/C++ run-time environment based on statements it finds in /etc/openvmdefaults.

There are two types of statements in the /etc/openvmdefaults file. The CLINKNAME statement
specifies the minidisk or directory that contains the C/C++ library. This statement contains the keyword

Using the Shell

18 z/VM: z/VM 7.2 OpenExtensions User's Guide

CLINKNAME followed by the disk name. The disk name can be anything that is supported by the VMLINK
command. If the disk name is a directory, the directory name must be preceded by the keyword .DIR.
The other is the CLIBNAMES statement which specifies the name of one or more load libraries to be
appended, in that specific order, to the GLOBAL LOADLIB list. The format of this statement is the
keyword CLIBNAMES followed by one or more load library names.

For example, if the C/C++ library resides on user MAINT's 1A1 disk and the load library is the standard
SCEERUN, the /etc/openvmdefaults file would look like this:

 CLINKNAME MAINT.1A1
 CLIBNAMES SCEERUN

Statements in /etc/openvmdefaults are delimited by the default newline character (X'15'). The
keyword must be in upper case and must be the first non-blank word on the line. Multiple statements of
this type are allowed.

If /etc/openvmdefaults does not exist, OPENVM SHELL will append SCEERUN to the GLOBAL
LOADLIB list, it if is found in the search order. If not, the OPENVM SHELL command will be unsuccessful.

Exiting the Shell
When you have finished using the shell you can exit to CMS or log off from the VM system. To exit to CMS,
enter the shell exit command. However, this exit command will not be processed until all background
jobs complete. To log off, enter the LOGOFF command with the cms command, (that is, enter cms
logoff). This will end your CMS session regardless of the state of any background job and will stop any
background job that is running.

Getting Rid of a Hung Application
If your application hangs, try the following procedure to get rid of it:

1. On the command line, enter <EscChar-V> or <EscChar-C>. When this is successful, the shell prompt is
displayed.

2. If the previous step does not work, the next step is to halt the shell by issuing the HX command. If this
works, CMS abnormal termination messages will appear and the terminal will enter VM READ state.
Enter the BEGIN command to continue.

3. The last choice is to restart the CMS session. Press the PA1 key and then enter IPL. If this short form
of the IPL command is not accepted (a consequence of how CMS was set up on your system) issue
IPL CMS to restart CMS.

Understanding Code Page Conversion
A code page for a specific character set determines the graphic character produced for each hexadecimal
encoding. The code page used is determined by the programs and national languages being used.

For internal processing, the OpenExtensions shell and utilities and many other POSIX programs can
operate only on data in the byte file system (BFS) that is encoded in one of three supported code pages:

• IBM-1047
• IBM-1027
• IBM-939

(The charmaps for these code pages are in /usr/lib/nls/charmap.)

Data in any other code page (for example, coming from a CMS record file or a workstation) must be
converted to one of the supported code pages before it can be processed. The three supported code

Using the Shell

Chapter 3. Using the OpenExtensions Shell 19

pages are compatible with the C/C++ compiler on the encodings for characters in the POSIX portable
character set.

The following 13 characters in the POSIX portable character set may have hexadecimal encodings that
differ between the shell-supported code pages and the country-extended code page used by VM in your
system:

Right brace (})
Left brace ({)
Backslash (\)
Right bracket (])
Left bracket ([)
Circumflex (‸)
Tilde (~)
Exclamation point (!)
Pound sign (#)
Vertical bar (|)
Dollar sign ($)
Commercial at-sign (@)
Accent grave (ˋ)

To see the POSIX portable character set and code page 00293 used by the C/C++ compiler, turn to
Appendix E, “Code Pages and the POSIX Portable Character Set,” on page 195.

Customizing the Square Brackets on Your Keyboard
Between the shell-supported code pages and any other code page, an application programmer needs to
be concerned about two characters in the POSIX portable character set that will have different encodings:

Left square bracket: [
Right square bracket:]

If you do not use an APL character set, on many programmable workstations you can customize your keys
so that you have hexadecimal encodings for the left and right square brackets that match the shell-
supported code pages:

X'AD' for a left square bracket ([)
X'BD' for a right square bracket (])

If you cannot program your workstation terminal emulator to produce these encodings, then you can use
CMS's SET INPUT and SET OUTPUT commands to accommodate your emulator. To customize the square
brackets, use these commands:

If the square brackets are not being entered correctly, enter:

SET INPUT [AD
SET INPUT] BD

If the square brackets are not being displayed correctly, enter:

SET PUTPUT [AD
SET OUTPUT] BD

When Do You Need to Convert between Code Pages?
You need to convert from one code page to another when:

• Transferring files between a workstation and the file system
• Copying data between CMS record files and BFS files

Using the Shell

20 z/VM: z/VM 7.2 OpenExtensions User's Guide

• Converting between ASCII and EBCDIC when using the pax utility

There are several options for converting data to or from a shell-supported code page:

• To convert singlebyte data that contains the square brackets when you are moving the data between
VM and the byte file system, you can use the (TRANSLATE option on the OPENVM PUTBFS and OPENVM
GETBFS commands. The (TRANSLATE option does not convert doublebyte data.

• To convert doublebyte or singlebyte data to a selected code page while you are working in VM, use the
C/C++ iconv utility. For information on how to use this utility, see the XL C/C++ for z/VM: User's Guide.
Note that a code page is also known as a code set.

• To convert doublebyte or singlebyte data to a selected code page while you are working in the shell, use
the iconv shell command.

Naming Files Using the POSIX Portable File Name Character Set
To simplify conversion requirements, you should use the POSIX portable file name character set when
naming your files:

Uppercase A to Z
Lowercase a to z
Numbers 0 to 9
Period (.)
Underscore (_)
Hyphen (-)

Default Escape character and LINEDEL
This default escape character may conflict with the LINEDEL character in effect for the user's terminal. A
shell user should enter cms terminal linedel off at the shell prompt or should enter TERMINAL
LINEDEL OFF before invoking the shell. This command is a good candidate for inclusion in the .profile
file.

In this document, references are made to the escape character, which by default is the cent sign (¢). For
example, on a UNIX system you would provide an end-of-file to a program by typing the ALT key
combined with the D key. As mentioned above, such key sequences are performed in the shell by typing
the escape character followed by a key. An end-of-file would be entered by typing ¢C followed by
pressing the ENTER key.

Default CP Terminal Escape Character and the Shell
The default CP terminal escape character is the “ (double quotation mark). This may interfere with some
shell commands, such as awk.

To avoid the interference, change the escape character to some other character by using the CP
TERMINAL ESCAPE command. The character you select for your CP escape character should not appear
in the data you are entering.

Another way to avoid interference is to disable CP's checking for terminal escape characters. To do that,
use the command CP TERMINAL ESCAPE OFF. When you are ready to enable checking again, use the
command CP TERMINAL ESCAPE ON.

Default CP Terminal Line End Character and the Shell
The default CP line end character is the # (number sign). This may interfere with some shell commands,
such as awk.

To avoid the interference, change the line end character to some other character by using the CP
TERMINAL LINEND command. The character you select for your CP line end character should not appear
in the data you are entering.

Using the Shell

Chapter 3. Using the OpenExtensions Shell 21

Another way to avoid interference is to disable CP's checking for line end characters. To do that, use the
command CP TERMINAL LINEND OFF. When you are ready to enable checking again, use the command
CP TERMINAL LINEND ON.

Using the Shell

22 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 4. Customizing the Shell

You can personalize your use of the OpenExtensions shell. This chapter discusses:

• Creating or modifying your .profile file
• Understanding environment variables
• Customizing your shell environment with the ENV variable
• Customizing the search path for commands with the PATH variable
• Setting options for a shell session
• Customizing your shell interface

Customizing Your .profile
When you start the OpenExtensions shell, it uses two levels of environment variables to meet your
particular needs or preferences as a user. The first level is a default systemwide user environment that is
established when the shell executes /etc/profile, the system-wide login script for the shell. The
system programmer may modify the variables in this file to reflect local needs (for example, the time
zone). If you do not have an individual user profile, the values in /etc/profile are used during your
shell session.

The shell also executes an individual login profile called the $HOME/.profile file (where $HOME is a
variable for the home directory for your individual user ID). Any values in the .profile file in your home
directory that differ with those in /etc/profile override them during your shell session. Your
administrator may set up such a file for you, or you may create your own.

Typically, your .profile might contain the following:

 ENV=$HOME/.setup
 export ENV #export env variable
 PATH=$PATH:$HOME:
 EDITOR=ed
 PS1='$LOGNAME':'$PWD':' >'

 export PATH EDITOR PS1 #export global variables

Figure 2. A Sample .profile

If the value on the right-hand side of the = sign does not contain spaces, tab characters, or other special
characters, you can leave out the single quotation marks.
ENV=$HOME/.setup

Identifies .setup in your home directory as your login script. See “Customizing Your Shell
Environment: The ENV Variable” on page 27 for more information about a login script.

export ENV
Specifies whenever a subshell is created, the ENV variable should be exported to it. See “Exporting
Variables” on page 54 for more information about exporting variables.

PATH=$PATH:$HOME:
Identifies the search path to be used when locating a file or directory. Here, the system first searches
the path identified in the PATH variable in /etc/profile, the system profile; it then searches your
home directory. See “Customizing the Search Path for Commands: The PATH Variable” on page 27
for more information.

Customizing the Shell

© Copyright IBM Corp. 1993, 2020 23

PS1='$LOGNAME':'$PWD':' >'
Identifies the shell prompt that indicates when the shell is ready for input. Here the prompt (default is
$) has been customized to show your login name and working directory. For example, for user ID
turbo working in the home directory, the prompt would display as:

turbo:/u/turbo: >

When turbo changes directories, the prompt changes to indicate the working directory.
EDITOR=ed

Identifies ed as the default editor used by some of the utilities, such as mailx.
export PATH EDITOR PS1

Specifies whenever a subshell is created, these variables should be exported to it. See “Exporting
Variables” on page 54 for more information about exporting variables.

If you create a subshell with the command sh –L, the shell starts and reads and processes your profile
file. The shell looks for .profile in the working directory; therefore, make sure that you are working in
the right directory when you enter this command.

Quoting Variable Values
When you have blanks in a variable value, you need to enclose the value in quotation marks. The
quotation marks tell the shell to treat blanks as literals and not delimiters. Single quotation marks are
more "serious" about this than are double quotation marks:

• Single quotation marks preserve the meaning of (that is, treat literally) all characters.
• Double quotation marks still allow certain characters ($, ˋ (backquote), and \ (backslash)) to be

expanded. This is important if you want variable expansion. For example, see how the $ is handled here:

export HOMEMSG="Using $HOME as Home Directory"

If your home directory were set to /u/user, the following:

echo $HOMEMSG

would display:

Using /u/user as home directory

If, instead, you enclosed the variable value in single quotation marks, like this:

export HOMEMSG='Using $HOME as home directory'

the following:

echo $HOMEMSG

would display:

Using $HOME as home directory

As you can see, the $ is not expanded.

Changing Variable Values Dynamically
You can also change any of these values for the duration of your session (or until you change them again).
You enter the name of the environment variable and equate it to a new value. For example:

PS1='+>'

changes the command prompt string to +>.

Customizing the Shell

24 z/VM: z/VM 7.2 OpenExtensions User's Guide

Understanding Environment Variables
You can display the shell's environment variables and their values by using the set command. You may
see many variables that you do not recognize. These are built-in, or predefined, variables that are set up
with default values when you start the shell. In other parts of this book, some of these predefined
variables are discussed; for complete information, see the sh command description in z/VM:
OpenExtensions Commands Reference.

You can display the value of a single variable with the echo command. For example:

echo $HOME

displays the current value of the HOME variable.

In general, echo displays the current values of all its operands after any shell processing has taken place.
For example, consider:

echo *.doc

The shell first expands the wildcard character *. This construct *.doc produces the names of every file in
the working directory that has the suffix .doc. So the output of echo is a list of all such files. If there are
no filenames ending in .doc, the command output is just *.doc.

Table 2 on page 25 lists some of the more frequently used built-in variables. For more information on all
the built-in variables, see the sh command description in z/VM: OpenExtensions Commands Reference.
You can customize the values of many of these variables by using your .profile; be aware, though, that
only .profile; only IFS, PS1, and PS2 support doublebyte characters for the values.

Table 2. Built-in Variables

Variable Purpose

_ (Underscore) expands to the last operand from the previously processed
command. For every command that is processed as a child of the shell, sh
sets this variable to the full path name of the executable file and passes this
value through the environment to that child process. When processing the
MAILPATH variable, this variable holds the value of the corresponding mail
file.

CDPATH Contains a list of directories for the cd command to search. Directory names
are separated with colons. CDPATH works in a similar way to the PATH
variable.

COLUMNS Used by several commands to define the width of the terminal output device.

EDITOR Specifies the default editor. This variable is usually set in your .profile.

ENV sh performs parameter substitution on this value and uses the result as the
name of an initialization file, or login script. This file is processed with the .
(dot) command; see the dot command in z/VM: OpenExtensions Commands
Reference. See “Customizing Your Shell Environment: The ENV Variable” on
page 27 for more information about the ENV variable. This variable is usually
set in your .profile.

FCEDIT Contains the name of the default editor for the fc command. If this variable is
not set, the default is the ed command.

HISTFILE Contains the path name of a file to be used as the history file. When the shell
starts, the value of this variable overrides the default history file. See
“Retrieving Commands from the History File” on page 44.

Customizing the Shell

Chapter 4. Customizing the Shell 25

Table 2. Built-in Variables (continued)

Variable Purpose

HISTSIZE Contains the maximum number of commands that the shell keeps in the
history file. If this variable contains a valid positive integer when the shell
starts, it overrides the default of 127.

HOME Contains the path name of your home directory. This is also the default
directory for the cd command.

IFS Contains a series of characters to be used as internal field separator
characters. Any of these characters can separate operands in unquoted
command substitutions such as ˋcommandˋ or $(command), or in parameter
substitutions. In addition, the shell uses these characters to separate values
put into variables with the read command. Finally, the first character in the
value of IFS separates the positional parameters in $* expansion. See “Using
Parameter and Variable Expansion” on page 57 for more information on
positional parameters.

LANG Contains the default locale value.

LC_ALL Indicates the locale to be used to override any values for locale categories
specified by LANG or any of the LC_ variables, such as LC_COLLATE,
LC_CTYPE, and LC_MESSAGES, which a user can set and interrogate.

LINENO Contains the number of the line currently being processed by a shell script.

MAIL Contains the path name of your system mailbox. If the MAILPATH variable is
not set, the shell tells you when new mail arrives in this file. The shell
assumes that new mail has arrived if the file modification time changes.

MAILCHECK Contains the number of seconds of elapsed time that must pass before the
system checks for mail; the default value is 600 seconds. When using the
MAIL or MAILPATH variables, the shell checks for mail before issuing a
prompt.

MAILPATH Contains a list of mailbox files. This overrides the MAIL variable. The mailbox
list is separated by colons. If any name is followed by ?message or %message,
sh displays the message if the corresponding file has changed. sh performs
parameter and command substitution on message, and the variable _
(temporarily) expands to the name of the mailbox file.

MBOX Contains the path name of your personal mailbox, usually $HOME/mbox, used
to store messages that have been read from your system mailbox. This
variable is usually set in your .profile.

OLDPWD Contains the name of the directory you were previously working in. The cd
command sets this variable.

PATH Contains a list of directories that the system searches to find executable
commands. Directories in this list are separated with colons. sh searches
each directory in the order specified in the list until it finds a matching
executable command. If you want the shell to search the working directory,
put a null string in the list of directories (for example, to tell the shell to
search the working directory first, start the list with a colon or semicolon).

PS1 Contains the primary prompt string used when the shell is interactive. The
default value is $. The shell expands parameters before the prompt is
printed. A single exclamation mark (!) in the prompt string is replaced by the
command number from the history list; see fc in z/VM: OpenExtensions
Commands Reference. For a real exclamation mark in the prompt, use !!. This
variable is usually set in your .profile.

Customizing the Shell

26 z/VM: z/VM 7.2 OpenExtensions User's Guide

Table 2. Built-in Variables (continued)

Variable Purpose

PS2 Contains the secondary prompt, or continuation prompt, used when
completing the input of such things as reserved word-commands, and quoted
strings. The default value of this variable is > .

PWD Contains the name of the working directory. When the shell starts, the
working directory name is assigned to PWD unless the variable already has a
value.

SECONDS Contains elapsed time. The value of this variable increase by 1 for each
elapsed second of real time. Any value assigned to this variable sets the
SECONDS counter to that value; initially the shell sets the value to 0.

SHELL Contains the full path name of the current shell.

Customizing Your Shell Environment: The ENV Variable
The customization discussed so far is set up inside your .profile file. However, the shell reads
your .profile only when you start the shell or when you enter the sh command with the –L option.

To have a customized shell session, you need to have a special shell script that sets up the environment
started each time you start the shell; this is called a login script. You specify the name of this script in the
ENV variable in your .profile file.

When you start the shell, the shell looks for an environment variable named ENV. You can use the ENV
variable to point to a login script that sets things up in the same way that the .profile file does.

For example, you might put all your alias definitions and other setup instructions into a file called .setup
in your home directory. You want these instructions run when your shell starts after you enter the OPENVM
SHELL command and whenever you explicitly create the shell during a session (for example, as a subshell
to run a shell script). To make sure ENV is set up after you enter the OPENVM SHELL command, put ENV
into your .profile file. For example:

ENV=$HOME/.setup

where .setup is the name of your login script.

To make sure ENV is set up when you execute a subshell, put this into your .profile file after the ENV
statement:

export ENV

You may find it useful to put all your aliases in the login script that ENV points to, instead of in
your .profile file. However, you should keep exported variable assignments in your profile, so that they
are run only one time.

Customizing the Search Path for Commands: The PATH Variable
Command interpreters usually have to search for a file that implements the command you want to run.
When using the shell, you tell the shell where to search for a command. Essentially, the shell uses a list of
directories in which commands may be found. This list is specified in your PATH variable in
your .profile file. The list could be called your search path, because it tells the shell where you want to
search.

You can set up a search path with a command of the form:

PATH='dir:dir:...'

Customizing the Shell

Chapter 4. Customizing the Shell 27

For example, you might enter:

PATH='/bin:/usr/bin:/usr/etc:/usr/macneil/bin:/usr/games:/usr'

The shell then searches the directories in the following order, when looking for commands or shell scripts:

1. /bin
2. /usr/bin
3. /usr/etc
4. /usr/macneil/bin
5. /usr/games
6. /usr

As soon as the shell finds a file with an appropriate name, it runs that file.

Because the shell runs a command as soon as it finds a file with an appropriate name, pay close attention
to the order in which you list directory names in your search path. For example, the previous search path
specifies the /bin directory (where OpenExtensions shell commands are stored) before the /usr/bin
directory.

If you set up your PATH incorrectly, you could get the wrong command. You should probably always
search the shell commands directory first: /bin. Some OpenExtensions shell commands run other shell
commands and utilities by name; they expect to get the OpenExtensions version of that command and
may not work correctly if a program that has the same name is found first in another directory.

Adding Your Working Directory to the Search Path
You can have the shell search your working directory for commands (in addition to the standard
directories that contain commands). As an example, suppose you have different directories containing the
source code for different programs. In each directory, you create a shell script named compile that
compiles all the source modules of the program in that directory. To compile a particular program, enter
cd to change to the appropriate directory and then enter:

compile

The shell searches the working directory, finds the compile shell script, and runs it.

You can add your working directory to your search path by one of these methods:

• Putting in an entry without a name
• Using a period (.) for the working directory.

For example, both of these specify that the working directory should be searched after /bin but
before /usr/local:

PATH='/bin::/usr/local' #no name
PATH='/bin:.:/usr/local' #using a period

Both of these say that your working directory should be searched before anything else:

PATH=':/bin:/usr/local' #no name
PATH='.:/bin:/usr/local' #using a period

Both of these say that your working directory should be searched after everything else:

PATH='/bin:/usr/local:' #no name, ends in a colon
PATH='/bin:/usr/local:.' #using a period

You should be careful when including the working directory early in your search path. If the working
directory includes a copy of an executable file that is also found in /bin, then the working directory's
copy will be executed instead of the copy from /bin. If some other user knows you have included the
working directory in your path, then he could exploit this fact to trick you into running a Trojan horse. Be

Customizing the Shell

28 z/VM: z/VM 7.2 OpenExtensions User's Guide

careful to watch for such situations if you choose to include the working directory early in your search
path.

The best way to specify search paths is to put them into your .profile file. That way, they are set up
every time you log into the shell.

Checking the Search Path Used for a Command
With aliases and search paths, it can be easy to lose track of what is actually processed when you enter a
command. The type command can tell you which file is processed if you enter a command line that
begins with a specific command. For example:

type date

tells you:

date is /bin/date

and the command:

type jobs

tells you:

jobs is a built-in command

Using type you can figure out how the search path works and what effect aliases have.

Changing the Locale: The LC_ Variables
To set the locale you want, you set the value for the LC_ALL variable and export it. This variable overrides
any values for locale specified with LANG or any of the LC_ variables (such as LC_COLLATE and
LC_MESSAGES) except LC_CTYPE.

When you change the locale, the shell and utilities run in the new locale, but the shell locale category
LC_CTYPE stays in the POSIX locale. This can affect parsing and shell expansion and cause unpredictable
behavior. In order to avoid this problem, after you change locale you must overwrite the current shell by
issuing the exec sh command. The new shell will correctly interpret the proper character set for the new
locale.

If you place an export LC_ALL=localename statement in your login profile, follow it with exec sh.
For example, to work in the French Canadian locale, add this to your .profile file:

LC_ALL=Fr_CA
export LC_ALL
exec sh

Setting Options for a Shell Session
The set command lets you set options, or flags, for your shell session. These flags control the way the
shell handles certain situations. To display the shell flags that are currently set, type set –o. To turn an
option on, enter:

set –o name

where name is the name of the option you want to turn on. If you want an option turned on for every shell
session, put the set command in your login script (the script specified on the ENV variable).

To turn an option off, enter:

set +o name

Customizing the Shell

Chapter 4. Customizing the Shell 29

Contrary to what you might expect, - means on, and + means off.

The following discussion highlights some of the options you may find useful. For all the options, see the
description of set in z/VM: OpenExtensions Commands Reference.

Exporting Variables
The command:

set -o allexport

indicates that you want to export—that is, pass to a child process or subsequent command—every variable
that is assigned a value. This command exports all variables that currently have values, plus all variables
assigned a value in the future.

Controlling Redirection
The command:

set -o noclobber

indicates that you do not want the > redirection operator to overwrite existing files. When this option is on
and you specify the construct >file, the redirection works only if file does not already exist. If you have this
option on and you really do want to redirect output into an existing file, you must use >|file (with an "or"
bar after the >) to indicate output redirection. See Chapter 5, “Working with Shell Commands,” on page
31 for more information.

Preventing Wildcard Character Expansion
The command:

set -o noglob

tells the shell not to expand wildcard characters in file names. This command is occasionally useful if you
are entering command lines that contain a number of characters that would normally be expanded. See
“Using a Wildcard Character to Specify File Names” on page 42 for a discussion of wildcard characters.

Displaying Input from a File
The command:

set -o verbose

tells the shell to display its input on the screen as the input is read. This command lets you keep track of
material that comes from a file.

Displaying Current Option Settings
The command:

set -o

displays all current option settings. The display of each option is preceded by one of these:

-o to indicate the option is enabled
+o to indicate the option is disabled

Customizing the Shell

30 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 5. Working with Shell Commands

The OpenExtensions shell is, above all, a programmer's interface. As a result, the shell commands are
strongly slanted towards the needs of a programmer. The OpenExtensions shell has many general tools
that can help any programmer. In addition, there are a number of commands designed especially for the
C/C++ programmer.

Specifying Shell Command Options and Operands
Most of the commands discussed in this chapter accept options. Shell command options are usually
specified by a minus sign (–) followed by a single character. For example, the ls command simply lists a
directory's contents in multiple columns on your screen. However:

ls –F

distinguishes between various file types when listing the contents of a directory. (See “Listing Directory
Contents” on page 94 for an example.)

ls –1

lists directory contents in a single column.

Options consisting of a minus sign followed by a character are called simple options. You specify simple
options after the name of the command and before any other operands for the command (that is,
operands that are not options). For example, you would enter:

ls –1 dir1

to list the contents of dir1 in a single column.

Command options and operands must be typed as singlebyte characters. Additionally, delimiters such as
slashes, braces, and parentheses must be typed as singlebyte characters.

The order of options and operands is important. If you enter:

ls dir1 –F

ls lists the contents of dir1 and then tries to list the contents of the directory, or attributes of the file,
called –F.

As a special notation, most OpenExtensions shell commands let you specify a double minus sign (–␠–) to
separate the options from the nonoption operands; –␠– means that there are no more options. Thus, if
you really have a directory named –F, you could enter:

ls –␠– –F

to list the contents of that directory or the file attributes.

The OpenExtensions shell gives you a shorthand way to specify more than one simple option to a
command. For example, –t and –v are both simple options that you can specify with the cat command.
(To find out what these options do, read the description of cat in z/VM: OpenExtensions Commands
Reference.) For example, you could enter cat –t –v file, or you could combine the two options into
cat –tv file. The order of the options is not important. cat –vt file is equivalent to cat –tv
file.

Working with Shell Commands

© Copyright IBM Corp. 1993, 2020 31

Specifying Options with Accompanying Operands
In addition to simple options, some commands accept options that have accompanying operands. Such
options look like simple options followed by additional information. The operand may be a number, a
string, the name of a file, or something else.

For example, if you read the description of ps in z/VM: OpenExtensions Commands Reference, you will see
that ps accepts an operand of the form:

–u userlist

When z/VM: OpenExtensions Commands Reference shows part of a command line in italics, the italicized
material is just a placeholder; when you actually use the command, you should fill in something else in its
place. In this case, userlist should be a string of one or more UID numbers or login names separated by
commas and enclosed in single quotation marks. In the command:

ps –u 'macneil,wellie1'

userlist is macneil,wellie1. (If the string does not contain spaces, tabs, or other special characters,
you can actually omit the enclosing single quotation marks, but the command is often easier to read if you
use quotation marks anyway.) When it runs, ps displays information for the specified users.

Help for Shell Command Usage
If you incorrectly specify a command, a usage note for the command is displayed. The usage note
displays the proper format for the command. Often you can display a usage note deliberately if you
specify the command with a -? option.

For online help information about a command, use the z/VM HELP facility (see “Online Help” on page
47).

Interrupting a Shell Command
If you want to interrupt a command and stop it from completing, type <EscChar-C>.

Understanding Standard Input, Standard Output, and Standard Error
After a command begins running, it has access to three files:

It reads from its standard input file. By default, standard input is the keyboard.
It writes to its standard output file. By default, standard output is the screen.
It writes error messages to its standard error file. By default, standard error is the screen.

In the OpenExtensions shell, the names for these files are:

• stdin for the standard input file.
• stdout for the standard output file.
• stderr for the standard error file.

The shell sometimes refers to these files by their file descriptors, or identifiers:

• 0 for stdin
• 1 for stdout
• 2 for stderr

For more information about the file descriptors that the shell supports, see the sh command description
in z/VM: OpenExtensions Commands Reference.

Working with Shell Commands

32 z/VM: z/VM 7.2 OpenExtensions User's Guide

Redirecting Command Output to a File
Commands entered at the command line typically use the three standard files described in the previous
section, but you can redirect the output for a command to a file you name. If you redirect output to a file
that does not already exist, the system creates the file automatically.

Most OpenExtensions shell commands display information on your workstation screen, standard output.
If you redirect the output, you can save the output from a command in a file instead. The output is sent to
the file rather than to the screen. At the end of any command, enter:

>filename

For example:

cat file1 file2 file3 >outfile

writes the contents of the three files into another file called outfile. All the information in the original
three files is concatenated into a single file, outfile.

When you redirect output with >filename and it is an existing file, the output writes over any information
that the file already contains. To append command output at the end of the file, use:

>>filename

instead. For example:

sort -u file1 >output 2>>outerr

redirects the result of the sort to the file named output (instead of standard output) and appends any
error messages to the file outerr, which is a record of errors encountered during various sorts.

Suppose you entered:

sort -u filea 2>&1 >output

In this command, you see two redirections:

• Error output from the sort is redirected to standard output (&1), the display screen.
• The result of the sort is redirected to the file named output.

Redirecting Input from a File
You can redirect input in much the same way that you redirect output. A command that usually takes
input from standard input can be redirected to take input from a file instead. For example, with this
mailx command, you can send the file power to another user.

mailx deej <power

The file power, rather than your input from the keyboard, becomes input to mailx.

Redirecting Error Output to a File
You can redirect error output from the workstation screen to a file, using 2>. (As you remember, 2 is the
file descriptor for stderr.) For example:

sort -u filea 2>errfile

sorts filea, checking for unique output records. Any messages regarding duplicate records are
redirected to a file named errfile.

Working with Shell Commands

Chapter 5. Working with Shell Commands 33

If you want to append error output to an existing file, use 2>>.

And if you do not care about seeing the error output, you can just redirect it to /dev/null, also known as
the "bit bucket". This is equivalent to discarding the error messages.

sort -u filea 2>/dev/null

Closing a File
The operating system has a limit on the number of streams to a file that a process can open. The shell
closes a stream for you when a shell script ends. However, to conserve on the number of active file
streams, you can close regular files when you are finished working with them in a shell script. To close a
regular file, use either of the following:

exec n<&-
exec n>&-

where n can be file descriptors 3 through 9.

Similarly, you can close standard output, standard input, and standard error when you do not need them.
For example, for an application that does not display anything, you may want to close standard output.
Here is the command syntax for those files:

exec 0<&- (close standard input)
exec 1>&- (close standard output)
exec 2>&- (close standard error)

Dumping Nontext Files to Standard Output
The od command can dump the contents of a file to standard output in several different formats.

od file

dumps a file in octal.

od -h file

dumps the file in hexadecimal. Either of these may be useful if you want to check the actual contents of a
nontext file. Other dump formats are available.

Setting Up an Alias for a Command
After you have used the OpenExtensions shell for a while, you will probably find that there are some
commands that you use frequently. Rather than typing them over and over, you can set up an alias for
these commands. An alias is a personalized name that stands for all or part of a command. You can create
an alias by entering:

alias name="string"

in response to the shell's usual prompt for input. This is not a usual command; it is an instruction to the
shell itself.

For example, suppose you have a hard time remembering that the mv command actually renames files. To
make life easier for yourself, you could set up a simple alias by entering this on your command line:

alias renam="mv"

From this point onward in your session, whenever the shell sees the command renam, the renam is
replaced with mv. The alias facility lets you create more usable commands.

Working with Shell Commands

34 z/VM: z/VM 7.2 OpenExtensions User's Guide

Clearly, you could use an alias to save yourself some typing too. You could define c as an alias for cat.
Then you would enter:

c file

to get the effect of:

cat file

Defining an Alias
If you will be using an alias frequently, put the alias command in your profile file ($HOME/.profile).
When you issue the OPENVM SHELL command or start a shell with sh –L, the shell reads the aliases
from the file and sets them up immediately. See “Customizing Your .profile” on page 23 for more
information about customizing your profile file.

To display all the currently defined aliases, you just enter:

alias

and the shell displays them. You will see a number of aliases that you did not set up. These are predefined
aliases that the shell always creates.

When the shell replaces an alias, it checks to see if the result is another alias. The shell continues to
check for and replace aliases until no aliases remain or the replacement would result in a never-ending
loop of alias expansion. For example, the shell defines the alias functions as follows:

alias functions="typeset -f"

Now, you might say to yourself, “Why do I need to type functions when I could just set up the alias f?”
You could therefore enter:

alias f=functions

Then you enter:

f abc

the shell replaces f with functions, which the shell in turn replaces with:

"typeset -f"

and the command that ends up being called is:

typeset -f abc

Redefining an Alias for a Session
You can redefine an alias during a session, even if it is defined in your profile file. If you enter the
command:

alias name="string"

during a session and name is already an alias, the shell forgets the old meaning and uses the new
meaning.

Setting Up an Alias for a Particular Version of a Command
If you tend to use a command with the same options every time, you may want to set up an alias for the
command with those particular options. Let's take an example. The grep command searches through
files and prints out lines that contain a requested string. For example:

grep hello file

Working with Shell Commands

Chapter 5. Working with Shell Commands 35

displays all the lines of file that contain the string hello. Usually, grep distinguishes between
uppercase and lowercase letters; this means, for example, that the search in the previous example does
not display lines that contained HELLO, Hello, and so forth. If you want grep to ignore the case of letters
as it searches, you must specify the –i option, as in:

grep -i hello file

This finds hello, HELLO, Hello, and so on.

If you think you prefer to use the –i version of grep most of the time, you can define the alias:

alias grep="grep -i"

From this point on, if you use the command:

grep string file

it is automatically converted to:

grep -i string file

and you get the case-insensitive version of the command grep.

As another example, the rm command to delete (remove) a file has an –i option that prompts you to
confirm the deletion. The file name and a question mark are displayed. For example, if you entered rm -i
file1 and file1 is in your working directory, you would see the prompt:

file1: ?

before the system actually removes the file. You then enter y (yes) or n (no) in response. If you like this
extra bit of safety, you might define:

alias rm="rm -i"

After this, when you call rm, it automatically checks with you before deleting a file, just to make sure that
you really want to delete it.

It may seem odd to define an alias that has the same name as a command that is used in the alias, but
this is so common that the OpenExtensions shell checks specially for an alias of the same name, and does
the correct thing.

If you find yourself using the same option every time you call a command, you might consider creating an
appropriate alias so that the shell automatically adds the option. Of course, the best place to define this
alias is in your .profile file; then the alias is set up every time you invoke the shell.

Using Alias Tracking
Alias tracking can reduce the time the shell spends searching your search path (specified with the PATH
variable) for a command; it helps shell scripts run faster. A tracked alias is a shell-created alias that is the
full path name for a command.

To use alias tracking, enter the command:

set -o trackall

The first time you enter a command, the shell creates an alias that is the full path name of the command.
For example, if you entered the ps command, the shell would create the alias:

ps="/bin/ps"

Each time you enter a command, the shell uses its tracked alias, instead of searching PATH for the
command.

To list your tracked aliases, enter the command:

Working with Shell Commands

36 z/VM: z/VM 7.2 OpenExtensions User's Guide

alias -t

To turn off alias tracking, enter the command:

set +o trackall

Turning Off an Alias
If you have set up an alias like the one previously described for rm, you may find that you do not want the
alias to apply in some situations. For example, when you delete a huge number of files, you probably do
not want rm to ask if it is okay to delete each one. In this situation, you have several options:

• Get rid of the alias entirely. The command:

unalias rm

gets rid of the rm alias for the session. After this, when you enter rm, you get the real rm command.
• Escape the alias. If you put a backslash in front of an alias, the shell uses the real command rather than

the alias (this does not apply to tracked aliases). For example:

\rm file

• Specify the full path name. For example:

/bin/rm file

tells the shell to run the program in /bin/rm. The shell does not perform alias substitution when you
specify a command as a path name.

These alternatives should help you get around options that you have automatically associated with a
command.

Combining Commands
There are several simple ways you can combine several commands on a single command line.

• You can run a series of commands, one after the other:

Using a semicolon (;)
Using &&
Using ||

• You can run more than one command concurrently:

Using a pipe (|) or a filter with a pipe

The output from the first command is piped to the next command as the first command is running.

Using a Semicolon (;)
The OpenExtensions shell lets you enter several commands on the same command line. To do this, just
use the semicolon character to separate the commands; for example:

cd mydir ; ls

Also, if you have defined the alias:

alias l="ls –l"

you can enter:

cd mydir ; l

Working with Shell Commands

Chapter 5. Working with Shell Commands 37

because you can use aliases such as l after a semicolon.

Using && or ||
When stringing together more than two commands, you may want to control the running of the second
command based on the outcome of the first command. You can use:
&&

If the command that precedes && completes successfully, the command following && is run. Leave a
space on either side of the && operator: command && command.

||
If the command that precedes || fails, the command following || is run. Leave a space on either side
of the || operator: command || command.

Using a Pipe
The output from one command can be piped in as input to the next command. Two or more commands
linked by a pipe (|) are called a pipeline. A pipeline is written as:

command | command | ...

You enter the commands on the same line and separate them by the "or-bar" character |.

Many OpenExtensions shell commands are well suited to being used in a pipeline. For example, the grep
command searches for a particular string in input from a file or standard input (the keyboard). A command
such as:

history | grep "cp"

displays all the cp commands recorded among the 16 most recently recorded commands in your history
file. The command:

ls –l | grep "Jan"

uses ls to obtain information on the contents of the working directory and uses grep to search through
this information and display only the lines that contain the string Jan. The pipeline displays the files that
were last changed in January.

A filter is a command that can read from standard input and write to standard output. A filter is often used
within a pipeline. In the following example, grep is the filter:

ps -e | grep cc | wc -l

lists all your processes currently active in the system, pipes the output to grep, which searches for every
instance of the string cc. The output from grep is then piped to wc, which counts every line in which the
string cc occurs and sends the number of lines to standard output.

Using Substitution in Commands
Another shell feature that is useful for programmers is command substitution. When encountering a
construct of the form:

$(command)

or:

ˋcommandˋ

in an input command line, the shell runs command. It then puts the output of the command, after
converting newlines into spaces, back into the command line, replacing command, and runs the new
command line. This is called command substitution.

Working with Shell Commands

38 z/VM: z/VM 7.2 OpenExtensions User's Guide

You may find the $() syntax easier to use for long command lines. However, the ˋ ˋ (accent grave)
syntax is more traditional and accepted on older UNIX shells.

As an example of how a programmer could use command substitution, consider a file called srclist,
containing the following list of source code file names: alpha.c, beta.c, and gamma.c. If you enter the
command:

grep printf $(cat srclist)

the shell runs cat against the contents of srclist and rewrites the original command line, so that this
line appears as:

grep printf alpha.c beta.c gamma.c

This line is then run, with grep searching through the given files, displaying lines that contain the string
printf. This type of construct quickly locates all references to a particular variable or function in the
source code for a program.

Using the find Command in Command Substitution Constructs
The find command is useful in command substitution constructs. find displays the names of files that
have specified characteristics. For example:

find dir1 –name "*.c"

finds all files in the directory dir1 whose names match the wildcard pattern *.c. In other words, it finds
all files in that directory with names having the .c suffix.

The command:

ls -l $(find dir1 –name "*.c")

finds all the .c files and then uses ls to display information about these files.

Complicating things further, you could enter

ls -l $(find dir1 –name "*.c") | grep -F "Nov"

This sets up a pipeline that displays ls information only for files that were last changed in November. (To
be perfectly accurate, it also displays information on files that have the string Nov in their names, too.)

Another useful find option has the form:

find path –ctime number

This says that you want to find files that have changed in the last number days. For example:

ls -l $(find dir –ctime 1)

displays ls information on all files that changed either yesterday or today.

On many UNIX and AIX systems, the find command prints out the file names only if you specify the –
print option. Thus, you would have to enter:

find dir –name "*.c" –print

to get the results just described. The OpenExtensions shell version of find automatically prints its results
without –print. However, if you have an existing shell script or compatibility with UNIX systems is
important to you, you can use –print.

For more information on the find command, see z/VM: OpenExtensions Commands Reference.

Working with Shell Commands

Chapter 5. Working with Shell Commands 39

Characters That Have Special Meaning to the Shell

Certain characters have special meaning to the shell; these are often called metacharacters. If you enter a
command that contains any of these characters, the shell often assumes that you are using the character
in its special sense.

Used with Commands
Character

Usage
|

Pipes the output from one command to a second command; separates commands in a pipeline.
||

Separates two commands. If the command preceding || fails, it runs the following command
(Boolean OR operator).

&
Runs a command in the background, if placed at the end of a command line.

Used in redirection, &0 represents standard input, &1 represents standard output, and &2 represents
standard error.

&&
Separates two commands. If the command preceding && succeeds, it runs the following command
(Boolean AND operator).

;
Separates sequential commands; lets you enter more than one command on the same line.

()
In a sequence of commands, groups those commands that are to run as a separate process in a
subshell. This means the current shell invokes a second shell and the second shell actually runs the
command. Thus, the command runs in a separate execution environment: It can change working
directories, change variables, open files, and so on, without affecting the first shell.

(␠) is also used to group mathematical operations.

{ }
In a sequence of commands, groups commands and runs the command in braces without creating a
subshell.

Both { and } are reserved words to the shell. To make it possible for the shell to recognize these
symbols, you must enter a blank or <newline> after the {, and a semicolon or <newline> before the }.

#
Following a command in a shell script, indicates the beginning of a comment.

$
At the beginning of a string, indicates it is a variable name.

Used in File Names
Character

Usage
/

Separates the parts of a file's path name.
~

(Tilde) symbolizes the home directory when used at the beginning of a file name. For example,

~/.profile

Working with Shell Commands

40 z/VM: z/VM 7.2 OpenExtensions User's Guide

refers to the user's .profile file.

You can also use the ~ to refer to your "previous" working directory; for example, the command

cd ~-

returns you to the directory in which were previously working.

.
By convention, indicates that what follows the . is an extension, or suffix, to the file name.

?
Used as a wildcard character that can match any one character, except a leading dot (.).

*
Used as a wildcard character that can match a sequence of zero or more characters, except a leading
dot (.).

Redirecting Input and Output
Character Usage Example

< Redirects input to a specified file. “Redirecting Input from a File” on page 33.

> Redirects output to a specified
file.

“Redirecting Command Output to a File” on page
33.

>> Redirects output to be appended
to the end of the specified file.

“Redirecting Command Output to a File” on page
33.

2> Redirects error output to a
specified file.

“Redirecting Error Output to a File” on page 33.

<<EOF Redirects input until EOF. This is used in a "here-document." For example,
say you had a shell script named here:

ls <<EOF
/bin
EOF

When you run the shell script, it runs the ls
command using the parameters between the two
EOFs.

Using a Special Character Without Its Special Meaning
If you do not want to use the special sense of a metacharacter you can turn off the special meaning with
any of these constructs:

\
' '
" "

The Backslash (\)
The backslash character (\) turns off the special meaning of the character that follows it. For example:

echo it\'s me

prints:

it's me

If you just try:

Working with Shell Commands

Chapter 5. Working with Shell Commands 41

echo it's me

without the backslash, the shell prints a > prompt after you press ENTER instead of the usual $. The >
prompt is a continuation prompt. An apostrophe ' without a backslash is taken to be the start of a string
and the shell assumes that the string keeps going until you type another apostrophe, even if that goes on
for several lines. The shell does not process the string until you type the closing apostrophe.

So remember to put a backslash in front of any special character, unless you know its special meaning
and you want that meaning. Because a backslash itself is a special character, you must type two of them
whenever you want a single backslash.

A Pair of Single Quotation Marks (' ')
A pair of single quotation marks (' ') turns off the special meaning of all characters within the quotation
marks. (An apostrophe ' character is treated the same as a single quotation mark.)

A Pair of Double Quotation Marks (" ")
A pair of double quotation marks (" ") turns off the special meaning of the characters within the
quotation marks, except for $, ˋ, ", and \.

Using a Wildcard Character to Specify File Names
If you have used other operating systems, you are probably familiar with the concept of wildcard
characters. (The wildcard character is referred to as a global character, or pattern-matching character.) A
wildcard character is a special character that may be used to save typing in file names in shell commands.

The shell replaces the pattern with the list of matching files before the command is invoked. The
OpenExtensions shell recognizes several different wildcard characters:

*
?
[]

The * Character
The asterisk (*) stands for any sequence of zero or more characters. You can use the asterisk in file
names. For example:

ls aa*

lists all files in the working directory with names that begin with aa. The shell translates the command
into aa.c aa.o aa.output .

The command:

mv *.c dir1/dir2

moves every file with the .c suffix from your working directory to the directory dir1/dir2.

You can use the * wildcard character in directory names as well as in file names. For example:

cat */*.c

displays the contents of all files that have the .c suffix, in directories under your working directory.

The ? Character
In a path name, the question mark ? can stand for any single character. For example:

file.?

Working with Shell Commands

42 z/VM: z/VM 7.2 OpenExtensions User's Guide

refers to any and all files with names that consist of file. followed by any single character. This can
mean file.a, file.b, file.c, and so on.

You can combine * and ?.

ls *.?

displays the names of all files under the working directory that have one-character file name suffixes.

Again, you can use the ? in directory names as well as file names. For example:

ls ???/*

shows all files in every directory under your working directory that has a three-character name.

The Square Brackets []
Square brackets containing one or more characters stand for any one of the contained characters. For
example:

[bch]at

matches bat, cat, or hat.

ls [abc]*

lists all files in the working directory the names of which start with a, b, or c, followed by any other
sequence of zero or more characters. In other words, it lists all files whose names start with a, b, or c.

You can specify ranges of characters inside the square brackets by specifying the first character in the
sequence, a hyphen (-), and the last character. For example:

[a–m]

Matches any character from a through m. This does not include hexadecimal ranges.

Suppose, for example, that you want to copy the contents of the working directory into two separate
directories. You might enter:

cp [a–m]* dira

to copy all files with names beginning with the letters a through m to the directory dira, and then use a
second command:

cp [n–z]* dirb

to copy the rest of the files to the directory dirb.

A command such as:

rm *.[a-z]

removes every file with a suffix consisting of a single lowercase letter.

If the first character inside a bracket construct is an exclamation mark !, the construct matches any
character that is not inside the brackets. For example:

ls [!a–m]*

lists any file that does not begin with one of the letters in the range a through m.

In the same way:

rm [!0-9]*

removes any file with a name that does not start with a digit.

Working with Shell Commands

Chapter 5. Working with Shell Commands 43

Retrieving Previously Entered Commands

In the OpenExtensions shell, there are two ways to retrieve previously called commands:

• the VM retrieve function key
• the history command, combined with the r command

Using the Retrieve Keys
Retrieve keys provide a way to recall previously issued commands to the command line, where they can
be edited and reissued. This key is usually defined in the user's PROFILE EXEC, but can be assigned at
anytime using the SET RETRIEVE command. To set the F12 key to be the RETRIEVE key, you would
would enter:

set pf12 retrieve

This is a VM command (specifically a control program command) so to enter it from the shell, prefix it with
cms.

Press the RETRIEVE key repeatedly until the command you want to use is displayed on the command
line. After the command is displayed, you can modify the command or use it as it is displayed. Press
ENTER to run the command.

Retrieving Commands from the History File
The shell uses a file in your home directory to record each command you enter. This file is called the
history file; its name is .sh_history. If you enter the command:

history

the shell displays the current contents of your history file. Each command is numbered.

You can rerun any of the commands in your history file by typing r, followed by a space, followed by the
number of the command you want to use. Think of r as the "redo" command.

For example, suppose you enter a complicated command to compile part of a program. The program
contains a syntax error, so you call a text editor to edit the source code and correct the problem. Now you
want to run the same compile command on the corrected program. You may save yourself a good deal of
typing by using:

history

to find out the number of the previous compile command; you can then run the command with r.

Another time-saver is to specify your shell prompt as:

PS1='(!)$'

in your .profile. The shell prompt is then preceded by the number assigned to the command in the
command history file.

This is how you use the command numbers to enter a command. To repeat command number 14, enter:

r 14

The shell displays the original command 14 in the output area of the screen and then runs it. If you get
another error, you can correct it, and then compile again with another r 14. You can perform the
operation many times, but you have to type the original only one time.

If you type r followed by a space, followed by a string of characters (not beginning with a digit), the shell
checks backward through the history file and runs the most recent command that begins with the given

Working with Shell Commands

44 z/VM: z/VM 7.2 OpenExtensions User's Guide

string. For example, let's look at the compilation example. Suppose you are using the c89 command to
compile your program. Then:

r c89

looks back through the history and runs the most recent c89 command. You do not even have to check on
the number of the command you want to enter. The shell displays the selected command in the output
area of the screen and then runs it.

This backward-search feature of r can search for aliases as well as usual commands. r searches for the
beginning of the command line as you typed it, not the way that the line looked after the alias was
replaced.

If you enter r without a number after it, the shell repeats the most recent command.

Editing Commands from the History File
Suppose that you have a sequence of source files named file1.c, file2.c, file3.c, and so on that
you want to compile each one with similar c89 commands. This situation is a little different from the one
discussed in the previous section. You do not want to rerun the same command for each file; the
command has the same form each time, but you have to specify a new file name each time.

You can still do this using the history file. The command:

r old=new command

runs a previous command but replaces the first occurrence of old with new. For example, suppose you
compile file1.c with:

c89 options file1.c

Then the command:

r file1=file2 c89

tells the shell to search back for the most recent c89 command and to change file1 to file2. The shell
makes this change and then displays and runs the modified command.

r file2=file3 c89

performs the same kind of operation, changing file2 in the previous command to file3 and then going
ahead with the compilation. This saves you the trouble of retyping all the options for the command.

As mentioned earlier, entering alias displays all the currently defined aliases. You will see a number of
aliases that you did not set up; for example:

history="fc –l"

The command history is actually a predefined alias for the fc command with the –l option. The fc
command displays and edits commands in the history file. Generally, it is easier to remember to type
history, so the shell predefines this alias.

If you have displayed the predefined aliases, you probably noticed that r is also a predefined alias. It also
stands for a version of the fc command. As with history, the r alias was created because it is easier to
use and read than the straight fc command. For full details about fc, see z/VM: OpenExtensions
Commands Reference.

Using Record-Keeping Commands
Record-keeping commands can be very helpful for programmers. For example, suppose you have a
program that is split into several source files. For the sake of simplicity, assume that the source files all

Working with Shell Commands

Chapter 5. Working with Shell Commands 45

have the extension .c and are all stored in a subdirectory called src. (To read about extensions, see
“Naming Files” on page 99.)

It is often the case that you want to find out which source files in the subdirectory refer to a particular
variable or function. You can do this very simply with the command:

grep name src/*.c

The command checks all the appropriate files in the subdirectory src and displays the lines that contain
name. Each line is labeled with the name of the file that contains the line. Using this technique you can
quickly find the use of a function or data object in source files.

As another example of using record-keeping commands, suppose that you are working on a large
program and every few days you back up the source code for the program by copying it to a directory in a
different file system. You would like to compare the current versions of your source files with one of the
saved versions to find out what changes have been made between the two. The command:

diff oldfile newfile

prints out all the differences between two versions of a file, making comparisons possible.

The command cksum gives a checksum for each file. If applied to two versions of what was at one time
the same file, cksum gives a convenient way to tell if the files are still the same. It does not, however,
indicate what the differences are. Be careful, however, because some changes are not detectable with
certain checksum schemes employed by cksum.

The command find also has applications to programming. For example, suppose you are looking for a
particular C source program but cannot remember where it is stored.

find / –name '*.c'

searches all the files and file systems, starting at the root, and displays the names of all files with the .c
extension.

Finding Elements in a File and Presenting Them in a Specific Format
awk is a powerful command that can perform many different operations on files. The general purpose of
awk is to read the contents of one or more files, obtain selected pieces of information from the files, and
present the information in a specified format.

One simple way to use awk is with a command line with the form:

awk '/regexp/ {action}' file

This asks awk to obtain information from the specified file. awk obtains the information by performing the
specified action on every line in the file that contains a string matching the regular expression regexp. (For
further information, see the appendix on regular expressions in z/VM: OpenExtensions Commands
Reference.) For example:

awk '/abc/ {print}' file

displays every record in file that contains the string abc.

For more discussion on using awk, see Appendix C, “Using awk,” on page 167.

Working with Shell Commands

46 z/VM: z/VM 7.2 OpenExtensions User's Guide

Timing Programs
The command time lets you time programs to find out how much processor time they actually require.
You might use this to compare two versions of a program to see if one runs faster than the other. You can
run a program with:

time command-line

where command-line is a command line that invokes the program you want to time. time runs the
program and displays:

• The total time the program took to execute, labeled real
• The total time spent in the user program, labeled user
• The central processor time spent performing OpenExtensions system services for the user, labeled sys

Online Help
The CMS HELP command provides help for reference information about commands. (If you are entering
the command from the shell, remember to preface the commands with cms.)

If you are unfamiliar with the HELP facility, you can enter:

help

to display the main HELP menu. The menu displayed will look similar to:

 HELP TASKS Task Help Information line 1 of 24
 (c) Copyright IBM Corporation 1990, 1995

 Move the cursor to the task that you want, then press the ENTER key
 or the PF1 key.

 TASKS - Help if you don't know z/VM commands.
 Good choice for beginners
 MENUS - List the HELP component MENUs
 HELP - Explain some ways for using HELP
 COMMANDS - List z/VM commands that you can use
 CMS - Show only CMS commands
 CP - Show only CP commands
 OPTIONS - Show options for the QUERY and SET
 commands of both CMS and CP
 SUBCMDS - List z/VM subcommands that you can
 use, such as XEDIT
 STATEMTS - Show statements for REXX, EXEC 2, and EXEC
 PF1= Help 2= Top 3= Quit 4= Return 5= Clocate 6= ?
 PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cu

Or, for more information on the HELP command, enter the following command:

help cms help

to see the following panel:

Working with Shell Commands

Chapter 5. Working with Shell Commands 47

 CMS HELP Brief Help Information line 1 of 12

 Brief Information

 The HELP command tells you how to use z/VM HELP. For introductory
 information on the z/VM HELP Facility itself, enter HELP SELF.

 FORMAT: Help component-name command-name (options

 EXAMPLE: You forgot how to use the ACCESS command. If you want to
 get help for that command, then enter:
 help cms access

 PF1= All 2= Top 3= Quit 4= Return 5= Clocate 6= ?
 PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

Then press the PF1 key to display the syntax for the HELP command. Then you will see:

 CMS HELP All Help Information line 1 of 720
 (c) Copyright IBM Corporation 1995

 HELP

 .-TASKs--------.
 >>--Help--+--------------+---
 |-| Choice A |-|
 |-| Choice B |-|
 '-| Choice C |-'

 Choice A:
 .-TASKs------------------------.
 |--+-Help-------------------------+----------------------------------
 |-taskname--TASKs--------------|
 |-menuname--MENU---------------|
 '-.----------------.--cmd_name-'
 '-component_name-'

 PF1= Brief 2= Top 3= Quit 4= Return 5= Clocate 6= ?
 PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

For more information about the HELP facility, see z/VM: CMS User's Guide; for more about the HELP
command, see z/VM: CMS Commands and Utilities Reference.

Example: Getting Help for OPENVM Commands
For example, if you want information on all the CMS OPENVM commands, you would enter:

cms help openvm

The output displayed looks similar to:

Working with Shell Commands

48 z/VM: z/VM 7.2 OpenExtensions User's Guide

 OPENVM MENU Menu Help Information line 1 of 16
 (c) Copyright IBM Corporation 1990, 1995

 The file names listed below represent CMS OPENVM commands.

 A file may be selected for viewing by placing the cursor under any
 character of the file wanted and pressing the ENTER key or the PF1 key.
 A menu file is indicated when a name is preceded by an asterisk (*).
 A task file is indicated when a name is preceded by a colon (:).
 For a description of the HELP subcommands and options, type HELP HELP.

 *CMS CREDIREC ERASE PARchive PERMit QMASK SETDIREC
 *OMACRO CREEXTLI GETbfs PATHCREA PUTbfs QMOUNT SETMASK
 *OROUTINE CRELINK LIStfile PATHDELE QDIRECTO REName SHell
 *OSHELL CRESYMLI MOUnt pathname QLINK RUN UNMount
 *XEDIT DEBUG OWNer PATHQUER
* * * End of File * * *

 PF1= Help 2= Top 3= Quit 4= Return 5= Clocate 6= ?
 PF7= Backward 8= Forward 9= PFkeys 10= 11= 12= Cursor

====>

Example: Getting Help for OSHELL cp
For example, if you want information on the cp shell command from the shell, you would enter:

cms help oshell cp

The output displayed looks similar to:

 OSHELL CP All Help Information line 1 of 109
(c) Copyright IBM Corporation 1993, 1995

 CP -- COPY A FILE

 cp (-fimp) file1 file2
 cp (-fimp) file ... directory
 cp -R (-fimp) source... directory
 cp -r (-fimp) source... directory

 Purpose

 cp copies files to a target named by the last argument on its command line.
 If the target is an existing file, cp overwrites it; if it does not exist, cp
 creates it. If the target file already exists and does not have write
 permission, cp denies access and continues with the next copy.

 If you specify more than two path names, the last path name (that is, the
 target) must be a directory. If the target is a directory, cp copies the
 PF1= 2= Top 3= Quit 4= Return 5= Clocate 6= ?
 PF7= Backward 8= Forward 9= PFkeys 10= 11= Related 12= Cursor

====>

Working with Shell Commands

Chapter 5. Working with Shell Commands 49

Working with Shell Commands

50 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 6. Writing Shell Scripts

 PI

Most people find themselves using some sequences of commands over and over again.

• A programmer might always use the same commands to compile source code and link the resulting
object code.

• A bookkeeper might have to go through the same sequence of commands each week to update the
books and produce a report.

To simplify such jobs, the shell lets you run a sequence of commands that have been stored in a text file.
For example, the programmer could store all the appropriate compiling and linking commands in a file. A
file containing commands in this way is called a shell script. After such a file is completed and made
“executable” (“processable”), the programmer can run all the commands in the file by entering the file
name on the command line.

Putting commands in a shell script has several advantages over typing the commands individually. Using a
shell script:

• Reduces the amount of typing you have to do. You have to type in the shell script only one time. Then
you can run all the commands in the script by entering the name of the file as a single shell command. A
shell script can save you a lot of time and effort if you are working with many files, or if some command
lines have several options.

• Reduces the number of errors. If you are typing in ten commands, you have ten chances to make a
mistake. With a shell script, however, you can take your time, edit the file carefully, and get it right
before you try to run it.

• Makes it easy for other people to do what you do. For example, consider the bookkeeper mentioned
earlier. When the bookkeeper goes on vacation, someone else has to do the job. It is much easier for
the substitute bookkeeper to type a single command that does everything correctly than to try to type in
the full sequence of commands.

For all these reasons, you will probably find that the use of shell scripts makes your work easier and more
productive. This chapter can provide only a brief overview, but it should give you an idea of how to write
and use shell scripts.

Running a Shell Script
You can run a shell script by typing the name of the file that contains the script. For example, suppose you
have a script named totals.scp that has three commands in it. If you enter:

totals.scp

the shell runs the three commands.

After you create a shell script, you need to be sure that the file containing the shell script has read and
execute permissions. Use the chmod and umask commands to set the permissions. See the discussion of
permissions in Chapter 12, “Working with Files,” on page 99 and the command descriptions in z/VM:
OpenExtensions Commands Reference.

Note: By default, a shell script does not inherit any variables from your current shell session. To pass on a
variable, you must export it.

For another example, suppose you want to compile and link a program composed of a collection of files
written in the C programming language. The shell script:

c89 -c file1.c file2.c # compile only
c89 -o outfile file1.o file2.o file3.c # outfile for executable

Writing Shell Scripts

© Copyright IBM Corp. 1993, 2020 51

compiles and link-edits the files and produces an executable file, outfile. Notice that in a shell script
you precede a comment with a #.

If you store this script in an executable file named compile, it could be run with the single command
compile.

Additionally, the command:

sh file

runs a shell script stored in the specified file. The sh command starts a new shell to run a command.

Using Variables
You can think of shell scripts as programs made up of shell commands. To allow more versatile shell
scripts, the shell supports many of the features of usual programming languages.

In a conventional programming language, a variable is a name that has an associated value. When you
want to use the value, you can use the name instead.

Creating a Variable
The shell also lets you create variables. A shell variable name can consist of uppercase or lowercase
letters, plus digits and the underscore character _. The name can have any length, but the first character
cannot be a digit. Uppercase letters are distinguished from lowercase ones, so NAME, name, and Name
are all different variables.

To create a shell variable, just enter:

name='string'

as a command to the shell. No spaces are allowed around the =. For example:

HOME='/usr/macneil'

sets up a variable with the name HOME and the value /usr/macneil.

After you set a variable, you refer to it by prefixing its name with a dollar sign ($). Any command can use
the value of a variable by referring to it this way. For example, if HOME is set to /usr/macneil:

cd $HOME

is equivalent to:

cd /usr/macneil

Similarly:

cp $HOME/* /newdir

is equivalent to:

cp /usr/macneil/* /newdir

To change the value of an existing variable, you use a command with the same form as the existing
variable. For example:

HOME='/usr/benjk'

changes the value of HOME from /usr/macneil to /usr/benjk.

Writing Shell Scripts

52 z/VM: z/VM 7.2 OpenExtensions User's Guide

If the value on the right-hand side of the = sign does not contain spaces, tab characters, or other special
characters, you can leave out the single quotation marks. For example, you can enter:

HOME=/usr/benjk

Calculating with Variables
Suppose you run the following commands either in a shell script or by typing in one command after
another:

i=1
j=$i+1
echo $j

The output of echo is 1+1 because a usual variable assignment assigns a string to a variable. Thus j gets
the string 1+1.

To evaluate an arithmetic expression, you can enter:

let "variable=expression"

This command line assigns the value of an expression to the given variable. For example:

i=1
let "j=$i+1"
echo $j

Here j is assigned the value of the expression and the echo command displays the value 2.

You can also use let to change the value of a variable. If you enter:

i=1
let "i=$i+1"
echo $i

the let command changes the value of i. The new value of i is the old value plus 1.

A let command can have any of the standard arithmetic expressions:
-A

Negative A
A*B

A times B
A/B

A divided by B, integer part thereof
A%B

Remainder of A divided by B
A+B

A plus B
A-B

A minus B
The standard mathematical order of operations is used, as shown in the way that operations are grouped:

• All unary minus operations are carried out;
• Then any *, /, or % operations (from left to right in the order they appear);
• Then any additions or subtractions (from left to right in the order they appear).

Many operators use special shell characters, so you usually need to put double quotation marks around
the expression. Thus:

let "i=5+2*3"

Writing Shell Scripts

Chapter 6. Writing Shell Scripts 53

assigns 11 to i, because the multiplication is done first. You can use parentheses in the usual way to
change the order of operations. For example:

let "i=(5+2)*3"

assigns 21 to i.

Note: let does not work with numbers that have fractional parts. It works only with integers.

Exporting Variables
Up to this point, the examples have been about defining shell variables and then using them in later
command lines. You can also define a shell variable and then call a shell script that makes use of that
variable. But you have to do a certain amount of preparation first.

A shell script is run like a separate shell session. By default, it does not share any variables with your
current shell session. If you define a variable VAR in the current session, it is local to the current
session; any shell script that you call will not know about VAR.

To deal with this situation, you can export the variable; enter:

export VAR

The export command says that you want the variable VAR passed on to all the commands and shell
scripts that you process in this session. After you do this, VAR becomes global and the variable is known
to all the commands and shell scripts that you use.

As an example, suppose you enter the commands:

MYNAME="Robin Hood"
export MYNAME

Now all your commands can use the MYNAME variable to obtain the associated name. You may, for
example, have shell scripts that write form letters that contain your name, Robin Hood, obtained from the
MYNAME variable. You could also combine these two commands into a single command:

export MYNAME="Robin Hood"

Note: You could use single or double quotation marks to enclose the variable value. See “Quoting
Variable Values” on page 24 for more information.

When a script begins running, it automatically inherits all the variables currently being exported. However,
if the script changes the value of one of those variables, that change is not reflected to the calling shell.

By default, any variables created within a shell script are local to that script. When another program is
run, those variables do not appear in its environment. However, the script can use the export command
to turn local variables into global ones. Inside a shell script:

export name

indicates that the variable with the given name should be exported. When other programs are run from
that script, they inherit the value of all exported variables. However, when the script ends, all its exported
variables are lost; the calling shell does not see them.

Some variables are automatically marked for export by the software that creates them. For example, if
you call the shell, the initialization procedure automatically marks the HOME variable for export so that
other commands and shell scripts can use it. Other variables must be exported explicitly, using the
export command.

Writing Shell Scripts

54 z/VM: z/VM 7.2 OpenExtensions User's Guide

Associating Attributes with Variables
The typeset command lets you associate attributes with shell variables. This process is analogous to
declaring the type of a variable in a conventional programming language. For example:

typeset –i8 y

says that y is an octal integer. In this way, you can make sure that arithmetic with y is always performed in
base 8 rather than the usual base 10.

Other attributes may specify how the variable's value is displayed when the variable is expanded.
Attributes of this kind are:
–Ln

The value should always be displayed with n characters, left-justified within that space.
–Rn

The value should always be displayed with n characters, right-justified within that space.
–RZn

The value should always be displayed with n characters, right-justified and with enough leading zeros
to fill out the rest of the space.

–Zn
The same as -RZn.

–LZn
The value should always be displayed with n characters, left-justified and with leading zeros stripped
off.

All of these options may lead to truncation of a value that is longer than the specified length.

You can use the –u attribute of typeset for variables with string values. Then whenever such a variable
is assigned a new value, all lowercase letters in the value are automatically converted to uppercase.
Similarly, the –l attribute specifies that whenever a variable is assigned a new value, all uppercase letters
in the value are automatically converted to lowercase.

The read-only attribute –r is useful when a variable is marked for export. The command:

typeset –r name

says that the variable name cannot be changed from its present value. Then subsequent commands
cannot change this value. You can also use the format:

typeset –r name=value

which sets the variable to the given value and then marks it read-only so that the value cannot be
changed.

Displaying Currently Defined Variables
The command typeset without any operands displays the currently defined variables and their
attributes. The variation:

typeset -x

displays all the variables currently defined for export.

Using Positional Parameters — The $N Construct
The sample shell script discussed earlier in this chapter compiled and link-edited a program stored in a
collection of source modules. This section discusses a shell script that can compile and link-edit a C
program stored in any file.

Writing Shell Scripts

Chapter 6. Writing Shell Scripts 55

To create such a script, you need to be familiar with the idea of positional parameters. When the shell
encounters a $N construct (that is, a $ followed by a number), it replaces the construct with a value taken
from the command line that started the shell script.

• $1 refers to the first string after the name of the script file on the command line
• $2 refers to the second string, and so on.

As a simple example, consider a shell script echoit consisting only of the command:

echo $1

Suppose this command is run:

echoit hello

The shell reads the shell script from echoit and tries to run the command it contains. When the shell
sees the $1 construct in the echo command, it goes back to the command line and obtains the first string
following the name of the shell script on the command line. The shell replaces the $1 with this string, so
the echo command becomes:

echo hello

The shell then runs this command.

A construct like $1 is called a positional parameter. Parameters in a shell script are replaced with strings
from the command line when the script is run. The strings on the command line are called positional
parameter values or command-line operands.

If you enter:

echoit Hello there

the string Hello is considered parameter value $1 and there is $2. Of course, the shell script is only:

echo $1

so the echo command displays only Hello.

Positional parameters that include a blank can be enclosed in quotation marks (single or double). For
example:

echoit "Hello there"

echoes the two words instead of just one, because the two words are handled as one parameter.

Returning to a compile and link example, a programmer could write a more general shell script as:

c89 -c $1.c
c89 -o $1 $1.o

If this shell script were named clink, the command:

clink prog

would compile and link prog.c, producing an executable file named prog in the working directory. In the
same way, the command:

clink dir/prog2

would compile and link dir/prog2.c. The shell script compiles and links a C program stored in a single
file.

Writing Shell Scripts

56 z/VM: z/VM 7.2 OpenExtensions User's Guide

As another example of a shell script containing a positional parameter, suppose that the file lookup
contains:

grep $1 address

(where address is a file containing names, addresses, and other useful information). The command:

lookup Smith

displays address information on anyone in the file named Smith.

If the value of the $N parameter includes special characters, the shell ignores those special characters
(that is, it treats them literally) when it evaluates the line in which the value was inserted. Returning to the
lookup example, if you enter:

lookup 'abc"def'

the parameter value abc"def replaces the construct $1 in the grep command, but the " is treated
literally; grep runs as if you had entered

grep abc\"def *

where \ is the escape character.

Using Quotation Marks to Enclose a $N Construct in a Shell Script
A $N construct in a shell script can be enclosed in double or single quotation marks.

• When double quotation marks are used, the parameter is replaced by the appropriate value from the
command line. For example, suppose the file search contains:

grep "$1" *

If you enter the command:

search 'two words'

the parameter value two words replaces the construct $1 in the grep command:

grep "two words" *

If the grep command had not contained the double quotation marks, the parameter replacement
would have resulted in:

grep two words *

which has an entirely different meaning.
• When you use single quotation marks to enclose a $N construct in a shell script, the $N is not replaced

by the corresponding parameter value. For example, if the file search contains:

grep '$1' *

grep searches for the string $1. The $1 is not replaced by a value from the command line. In general,
single quotation marks are “stronger” than double quotation marks. Less is more!

Using Parameter and Variable Expansion
As was shown, a $ followed by a number stands for a positional parameter passed to the script or
function. A positional parameter is represented with either a single digit (except 0) or two or more digits in

Writing Shell Scripts

Chapter 6. Writing Shell Scripts 57

curly braces; for example, 7 and {15} are both valid representations of positional parameters. For
example, if the command:

echo ${15}

appeared in a shell script, it would echo the fifteenth positional parameter.

Similarly, a $ followed by the name of a shell variable (such as $HOME) stands for the value of the
variable.

These constructs are called parameter expansions. In this sense, the term parameter can mean either a
positional parameter or a shell variable.

The OpenExtensions shell also supports more complicated forms of parameter expansions, letting you
obtain only part of a parameter value or a modified form of the value. As all the following examples
suggest, these parameter modifiers are intended to let you break off parts of file names.

Parameter Expansion Usage

${parameter:-value} You can use ${parameter:-value} in any input to the shell. If
parameter currently has a value and the value is not null (for
example, a string without characters), the foregoing construct stands
for the parameter's value; if the value of the parameter is null, the
construct is replaced with value. For example, a shell script might
contain:

SHELL=${SHELL:-/bin/sh}

If the SHELL variable currently has a value, this simply assigns SHELL
its own current value. However, if the value of SHELL is null, the
above assignment gives it the value of /bin/sh. The value after :– can
be thought of as a backup value in case the parameter itself does not
have a value. As another example, consider:

cp $1 ${2:-$HOME}

(This might occur in a shell script.) If both positional parameters are
present and have a nonnull value, the copy command is just:

cp $1 $2

However, if you call the shell script without specifying a second
positional parameter, it uses the backup value of $HOME. The result
is equivalent to:

cp $1 $HOME

${parameter:=value} The expansion form ${parameter:=value} is similar to the previous
form; the difference is that if parameter does not currently have a
value, then value is assigned to parameter, and then the new value of
parameter is used. Thus the := form actually assigns a value if
parameter does not already have one. In this case, parameter must
be a variable; it cannot be a positional parameter.

Writing Shell Scripts

58 z/VM: z/VM 7.2 OpenExtensions User's Guide

Parameter Expansion Usage

${parameter:?message} The expansion ${parameter:?message} is related to the previous two
forms. If the value of parameter is null, message is displayed. If the
construct is being used inside a shell script, the script ends with an
error status. For example, you might have:

cp $1 ${2:?"Must specify a directory name"}

In this case, the message following the ? is displayed if there is no
second positional parameter. If you omit message, the shell prints a
standard message. For example, you could just enter:

cp $1 ${2:?}

to get the standard error message.

${parameter:+replacement} The construct ${parameter:+replacement} might be thought of as the
opposite of the preceding expansions. If parameter has not been
assigned a value, or has a null value, this construct is just the null
string. If parameter does have a value, the value is ignored and
replacement is used in its place. Thus, if a shell script contains:

echo ${1:+"There was a parameter"}

the echo command displays:

There was a parameter

if the script was called with a parameter. If no parameter was
specified, the echo command has nothing to echo.

${parameter#pattern} The construct ${parameter#pattern} is evaluated by expanding the
value of parameter and then deleting the smallest leftmost part of the
expansion that matches pattern. For example, suppose that the
variable NAME stands for a file name. You might use:

${NAME#*/}

to remove the highest-level directory from the path name. If:

NAME="user/dir/subdir/file.c"

then:

${NAME#*/}

expands to:

dir/subdir/file.c

Writing Shell Scripts

Chapter 6. Writing Shell Scripts 59

Parameter Expansion Usage

${parameter##pattern} The construct ${parameter##pattern} removes the largest leftmost
part that matches pattern. For example, if:

NAME="user/dir/subdir/file.c"

then:

${NAME##*/}

yields:

file.c

The wildcard character * stands for any sequence of characters. In
this situation, it stands for everything up to the final slash.

${parameter%pattern} The construct ${parameter%pattern} removes the smallest rightmost
part of the parameter expansion that matches pattern. Thus if:

NAME="user/dir/subdir/file.c"

then:

${NAME%.?}

stands for:

user/dir/subdir/file

${parameter%%pattern} Similarly, ${parameter%%pattern} stands for the expansion of
parameter without the longest rightmost string that matches pattern.
Using the above example of NAME,

${NAME%%/*}

stands for:

user

Using Special Parameters in Commands and Shell Scripts
The OpenExtensions shell has a variety of special parameters that may be used in command lines and
shell scripts.

Parameter Meaning

$@ The complete list of positional parameters, each separated by a single space. For
example:

echo "$@"

If the positional parameters are all file names:

cp "$@" dir

copies all the files to the given directory dir. By using the double quotation marks,
the command will be interpreted correctly if the parameter contains blanks.

Writing Shell Scripts

60 z/VM: z/VM 7.2 OpenExtensions User's Guide

Parameter Meaning

$* The complete list of positional parameters, each separated by the first character of
the value of the shell variable IFS. For example, with:

IFS=,$IFS

then:

echo "$*"

displays the parameters with separating commas.

$# The number of positional parameters passed to this shell script. This number can
be changed by several shell commands (for example, set or shift); see z/VM:
OpenExtensions Commands Reference.

$? The exit status value returned by the most recently run command. The command
echo $? prints out the status from the most recently run operation or command.

$– The set of options that have been specified for this shell session. This includes
options that were specified on the command line that started the shell, plus other
options that have been set with the set command.

Using Control Structures
The shell provides facilities similar to those found in programming languages. It offers these control
structures, which are related to programming control structures:

• The if conditional
• The while loop
• The for loop

Using test to Test Conditions
Before discussing the various control structures, it is useful to talk about ways to test for various
conditions.

The test command tests to see if something is true. Here are some ways it can be used:

Test Categories and Command Strings Functions

Examine the nature of a file

test -d pathname Is pathname a directory?

test -f pathname Is pathname a file?

test -r pathname Is pathname readable?

test -w pathname Is pathname writable?

Compare the age of two files

test file1 -ot file2 Is file1 older than file2?

test file1 -nt file2 Is file1 newer than file2?

Compare the values of numbers A and B

test A -eq B Is A equal to B?

test A -ne B Is A not equal to B?

Writing Shell Scripts

Chapter 6. Writing Shell Scripts 61

Test Categories and Command Strings Functions

test A -gt B Is A greater than B?

test A -lt B Is A less than B?

test A -ge B Is A greater than or equal to B?

test A -le B Is A less than or equal to B?

Compare two strings str1 and str2

test str1 = str2 Is str1 equal to str2?

test str1 != str2 Is str1 not equal to str2?

Test whether strings are empty

test -z string Is string empty?

test -n string Is string not empty?

Any of these tests will also work if you put square brackets ([]) around the condition instead of using the
test command. For example, test 1=1 is the equivalent of [1=1].

The result of test is either true or false. (To be precise, test returns a status of 0 if the test turns out to
be true and a status of 1 if the test turns out to be false.)

You can use –n to check if a variable has been defined. For example:

test -n "$HOME"

is true if HOME exists, and false if you have not created a HOME variable.

You can use ! to indicate logical negation;

test ! expression

returns false if expression is true, and returns true if expression is false. For example:

test ! -d pathname

is true if pathname is not a directory, and false otherwise.

The if Conditional
An if conditional runs a sequence of commands if a particular condition is met. It has the form:

if condition
then commands
fi

The end of the commands is indicated by fi (which is "if" backward). For example, you could have:

if test -d $1
then ls $1
fi

This tests to see if the string associated with the first positional parameter, $1, is the name of a directory.
If so, it runs an ls command to display the contents of the directory.

Any number of commands may come between the then and the fi that ends the control structure. For
example, you might have written:

if
 test -d $1
then
 echo "$1 is a directory"

Writing Shell Scripts

62 z/VM: z/VM 7.2 OpenExtensions User's Guide

 ls $1
fi

This example also shows that the commands do not have to begin on the same line as then and that the
condition being tested does not have to begin on the same line as if. The condition and the commands
are indented to make them stand out more clearly. This is a good way to make your shell scripts easier to
read.

Another form of the if conditional is:

if condition
then commands
else commands
fi

If the condition is true, the commands after the then are run; otherwise, the commands after the else
are run. For example, suppose you know that the string associated with the variable pathname is the
name of either a directory or a file. Then you could write:

if
 test -d $pathname
then
 echo "$pathname is a directory"
 ls $pathname
else
 echo "$pathname is a file"
 cat $pathname
fi

If pathname is a directory, this shell script uses echo to display an appropriate message and then uses
ls to display a listing of its contents. Otherwise the shell script assumes pathname is a file and echos an
appropriate message and then uses cat to display the file itself.

The final form of the if control structure is:

if condition1
then commands1
elif condition2
then commands2
elif condition3
then commands3
 ...
else commands
fi

elif is short for “else if”. In this example, if condition1 is true, commands1 are run; otherwise, the shell
goes on to check condition2. If that is true, commands2 are run; otherwise, the shell goes on to check
condition3 and so on. If none of the test conditions are true, the commands after the else are run. Here
is an example of how this can be used:

if test ! "$1"
then
 echo "no positional parameters"
elif test -d $1
then
 echo "$1 is a directory"
 ls $1
elif test -f $1
then
 echo "$1 is a file"
 cat $1
else
 echo "$1 is just a string"
fi

The test after the if determines if the value of the first positional parameter, $1, is an empty string. If so,
there are no positional parameters, so the shell script uses echo to display an appropriate message;
otherwise, the script checks to see if the parameter is a directory name; if so, the contents of the directory
are listed with ls (after an appropriate message). If that does not work, the script checks to see if the
parameter is a file name; if so, the contents of the file are listed with cat (after an appropriate message).

Writing Shell Scripts

Chapter 6. Writing Shell Scripts 63

Finally, if none of the previous tests work, the parameter is assumed to be an arbitrary string, and the
script displays a message to this effect.

You could put that script into a file named listit and run commands of the form:

listit name

to list the contents of name in a useful form.

The while Loop
The while loop repeats one or more commands while a particular condition is true. The loop has the
form:

while condition
do commands
done

The shell first tests to see if condition is true. If it is, the shell runs commands. The shell then goes back to
check condition. If it is still true, the shell runs commands again, and so on, until condition is found to be
false.

As an example of how this can be used, suppose you want to run a program named prog 100 times to get
an idea of the program's average running speed. The following shell script does the job:

i=100
date
while test $i -gt 0
do
 prog
 let "i=$i-1"
done
date

The script begins by setting variable i to 100. It then uses the date command to get the current date and
time.

Next the script runs a while loop. The test condition says that the loop should keep on going as long as
the value of i is greater than zero. The commands of the loop run prog and then subtract 1 from the i
variable. In this way, i goes down by 1 each time through the loop, until it is no longer greater than 0. At
this point, the loop stops and the final instruction of the script prints out the date and time at the end of
the loop. The difference between the starting time and the ending time should give some idea of how long
it took to run the program 100 times.

(Of course, the shell itself takes some time to perform the test and to do the calculations with i. If prog
takes a long time to run, the time spent by the shell is relatively unimportant; if prog is a quick program,
the extra time that the shell takes may be large enough to make the timing incorrect.)

The for Loop
The final control structure to be examined is the for loop. It has the form:

for name in list
do commands
done

The parameter name should be a variable name; if this variable doesn't exist, it is created. The parameter
list is a list of strings separated by spaces. The shell begins by assigning the first string in list to the
variable name. It then runs commands one time. Then the shell assigns the next string in list to name, and
repeats commands. The shell runs commands one time for each string in list.

As a simple example of a shell script that uses for, consider:

for file in *.c
do
 c89 $file
done

Writing Shell Scripts

64 z/VM: z/VM 7.2 OpenExtensions User's Guide

When the shell looks at the for line, it expands the expression *.c to produce a list containing the names
of all files (in the working directory) that have the suffix .c. The variable file is assigned each of the names
in this list, in turn. The result of the for loop is to use the c89 command to compile all .c files in the
working directory. You could also write:

for file in *.c
do
 echo $file
 c89 $file
done

so that the shell script displayed each file name before compiling it. This would let you keep track of what
the script was doing.

As you can see, the for loop is a powerful control structure. The list can also be created with command
substitution, as in:

for file in $(find . -name "*.c")
do
 echo $file
 c89 $file
done

Here the find command finds all .c files in the working directory and then compiles these files. This is
similar to the previous shell script but also looks at subdirectories of the working directory.

Combining Control Structures
You can combine control structures by nesting (that is, putting one inside another). For example:

for file in $(find . -name "*.c")
do
 if test $file -ot $1
 then
 echo $file
 c89 -c $file
 fi
done

This shell script takes one positional parameter, giving the name of a file. The script looks in the working
directory and finds the names of all .c files. The if control structure inside the for loop tests each file to
see if it is older than the file named on the command line. If the .c file is older, echo displays the name,
and the file is compiled. You can think of this as making a set of files up to date with the file name
specified on the command line.

Using Functions
A shell function is similar to a subroutine in other programming languages: it is a sequence of commands
that do a single job. Typically, a function is used for an operation that you tend to do frequently in a shell
script. Before you can call a function in a shell script, you must define it in the script. After the function is
defined, you can call it as many times as you want in the script.

As an example, consider the following piece of a shell script, showing the function definition and how the
function is called in the shell script:

function td
{
 if test -d "$1" # test if first operand is directory
 then
 curdir=$(pwd) # set curdir to working directory
 cd $1 # change to specified directory
 $2 # run specified command
 cd $curdir # change back to working directory
 return 0 # return 0 if successful
 else
 echo $1 "is not a directory"
 return 1 # return 1 if not successful
 fi

Writing Shell Scripts

Chapter 6. Writing Shell Scripts 65

}
td /u/turbo/src.c ls # invoking the function

The purpose of td is to go to a specified directory, run a single command, and then return to the directory
from which the function was called.

To run a function, specify the function's name followed by one or two operands. To run the function td,
specify the function name followed by a directory name and a command name, as shown in the last line of
the foregoing example.

As you see in the td example, a function can also return a value. If the statement:

return expression

appears inside a function, the function ends and the value of expression is returned as the status, or
result, of the function. In general, the returned value:

• 0 means that the function has succeeded in its task.
• 1 means that the function has failed.

Anytime you need to do the same sequence of commands in a shell script, consider defining a function to
do the sequence of commands. This lets you organize a large script into smaller blocks of subroutines.

Variables set prior to the call are visible to and can be changed by the called function, and variables
created by the called function are visible to and can be changed by the caller.

 PI end

Writing Shell Scripts

66 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 7. Using Job Control in the Shell

When you enter a shell command, you start a process in which the command runs. When the process
completes, the system displays the shell prompt. When you enter that command, the OpenExtensions
shell runs it in its own process group. As such, it is considered a separate job and the shell assigns it a job
identifier—a small number known only to the shell.

When you enter a shell command, the system also assigns a process group identifier (PGID) and a process
identifier (PID). When only one command is entered, the PGID is the same as the PID. The PGID can be
thought of as a virtual-machine-wide identifier. If you enter more than one command at a time using a
pipe, several processes, each with its own PID, will be started. However, these processes all have the
same PGID and shell job identifier. The PGID is the same as the PID of the first process in the pipe.

To sum it up, there are several types of process identifiers associated with a process:
PID

A process ID. A unique identifier (in the user's virtual machine) assigned to a process while it runs.
When the process ends, its PID is returned to the system. Each time you run a process, it has a
different PID (it takes a long time for a PID to be reused by the system). You can use the PID to track
the status of a process with the ps command or the jobs command, or to end a process with the
kill command.

PGID
Each process in a process group shares a process group ID (PGID), which is the same as the PID of
the first process in the process group. This ID signals related processes.

If a command starts just one process, its PID and PGID are the same.

PPID
A process that creates a new process is called a parent process; the new process is called a child
process. The parent process ID (PPID) becomes associated with the new child process when it is
created. The PPID is not used for job control.

Several job control commands can either take as input or return the job identifier, process identifier, or
process group identifier: bg, fg, jobs, kill, and wait.

Running Several Jobs at the Same Time (Foreground and Background)
The OpenExtensions shell can run more than one job at a time, and one can be running in the foreground
while another is running in the background.

If you type a command and press ENTER, you see the output from the command displayed on your
screen. You cannot enter any other commands until the shell prompt ($) appears. This command has run
as a foreground job. Commands that take a few seconds to complete are convenient to run in the
foreground.

You may prefer to run as background jobs those shell commands that take longer to run, because they
prevent you from running any other commands while they are running in the foreground. The shell does
not wait for the completion of a background command before returning a prompt to you. Instead, while
the command runs in the background, you can continue entering other commands on the command line.

You can run a shell background job by any of these methods:

• Start the job in the background when you first enter it.
• Move a job from the foreground to the background.

Using Job Control in the Shell

© Copyright IBM Corp. 1993, 2020 67

Starting a Job in the Background with an Ampersand (&)
To start a command as a background job, simply end the command line with an ampersand (&). For
example:

sort myfile >myout &

When the background job starts to run, the system:

• Assigns it a job identifier, a process group ID (PGID), and a process ID (PID)
• Displays the job identifier (in brackets) and one or more PIDs (more than one if there is a pipe)
• Then issues the shell prompt so that you can enter another command.

The first (or only) PID is also the PGID. This is an example of the output when you enter a background
command:

$
sort myfile >myout &
[3] 717046
$

3 is the job identifier and 717046 is the PID and PGID.

Note the PID numbers and the job number when you create a background job; you can use them to check
the status of the job or to end it.

A shell job running in the background directs its output to standard output, your workstation screen. If
you do not want to have this output interfering with your work in the foreground, remember to redirect the
output to a file when you start a background command. After the output is redirected, you can look at it
whenever it is convenient.

A background job can be suspended. A background job that attempts to read from stdin is suspended
until it is made a foreground process. Therefore, if a program reads from stdin, you may want to redirect
stdin to a file. Also, depending on the setting of tostop by the stty command, output from a background
job can cause it to be suspended.

Moving a Job to the Background
Suppose you want to move a foreground job to the background, where it can run while you enter other
commands in the foreground. To put a job in the background:

1. Stop the job by entering <EscChar-Z>.
2. Enter the bg command. You may need to specify the job identifier with bg if there is more than one

stopped job.

A message displays the job identifier and the command that is running in the background.

Moving a Job to the Foreground
When you want to move a job from the background to the foreground, use the fg command. If there are
multiple background jobs, you need to supply the job identifier preceded by a % sign. For example:

fg %7

Checking the Status of Jobs
You can use either the jobs command or the ps command to check on the status of jobs.

Using Job Control in the Shell

68 z/VM: z/VM 7.2 OpenExtensions User's Guide

Using the jobs Command
The jobs command reports the status of background processes currently running, based on the job
identifier; it reports on the status of stopped processes and completed processes also. If you use the -l
option, you can display both the job identifier and the PID for the process.

Say you entered a command that involves more than one process—for example:

myprog | grep write

If you want to check the status of that command, use the jobs -l command. The status message
displays the job identifier, the PID number for each process in the job, the status of the command, and the
command being run; in this case the status message is:

 [1] 720902 + Stopped (SIGTSTP) myprog|grep write
 720902 alive -sh
 458759 alive -sh

In this case:

• The job identifier is 1 (from [1]).
• The PIDs of the processes are 720902 and 458759.
• The PGID is 720902 (the PID of the first process in the process group).

Using the ps Command
You can use the ps command to display a list of your processes that are currently running and obtain
additional information about those processes.

For example, here the ps command displays the status of started processes:

 PID TTY TIME COMMAND
 262148 tty 2:46 /bin/sh
 196614 tty 0:22 ./myprog
 65543 tty 0:13 /bin/grep
 196616 tty 2:07 /bin/ps

PID
This is a PID displayed as decimal value.

TTY
The name of the controlling terminal, if any. The controlling terminal is the workstation that started
the process.

TIME
The amount of central processor time the process has used after it began running.

COMMAND
The name of the command or program that started the process. The display indicates which directory
the command or program is found in. For example, the ps command is in /bin.

Usually, just issuing ps will tell you all you need to know about your current processes. However, there
are a number of options you can use to tailor the displayed information. Read the command description of
ps in z/VM: OpenExtensions Commands Reference.

Canceling a Job
Often you will start a job and then decide to interrupt it before it completes. You can do this regardless of
whether the job is running in the foreground or background.

Canceling a Foreground Job
To cancel a foreground job, enter <EscChar-C>. The command stops and the shell displays the shell
prompt.

Using Job Control in the Shell

Chapter 7. Using Job Control in the Shell 69

Canceling a Background Job
To cancel a background job, use the kill command.

Before you can cancel a background job, you need to know either a PID, job identifier, or PGID. You can
use the jobs command to determine any of these.

The format of the kill command is:
kill

 - s signal _ name pid job-identifier

To kill one process, use its PID. For example:

kill 717

would kill the process with the PID 717. Any other processes in the job—from a pipe—would not be killed.

To kill every process in a process group, you can use a job identifier or a negative PGID.

• You can use the job identifier for one process in the group preceded with a % to kill every process in the
group:

kill -s KILL %7

The -s option specifies the signal by name.
• You can use a negative PGID to kill every process in a process group. (As mentioned earlier, the PGID is

the PID for the first process in the process group.) For example:

kill -s -KILL -- -123456

will kill every process in the process group with PGID 123456.

Stopping and Resuming a Job
Occasionally, you may want to stop a job that is running in the foreground or background, perform a
different task, and then later resume the stopped job.

Stopping a Foreground Job
To stop a foreground job, enter <EscChar-Z>. A message displays the job identifier, the status Stopped,
and the command that is stopped.

Stopping a Background Job
To stop a background job, use the kill command with the STOP signal and the job identifier preceded
with a %. For example:

kill -s -STOP %3

stops the background job with the job identifier 3.

Resuming a Stopped Job
When you are ready to resume a stopped job, you can resume it in the foreground using the job identifier.
Enter:

fg %n

where n is the job identifier for the stopped job.

To resume a stopped job in the background, enter:

Using Job Control in the Shell

70 z/VM: z/VM 7.2 OpenExtensions User's Guide

bg %n

where n is the job identifier for the stopped job. The %n is unnecessary if there is only one job.

Delaying a Command
If you want to delay a command from running until a previous background job has completed, you can use
the wait command. You need to know the job identifier of the job you want to wait for; you can use the
jobs command to get that. For example, the command:

wait %7; print "Time for tea"

means that "Time for tea" will display on your screen when the command whose job identifier is 7
finishes running.

Running a Job in the Background after Exiting
If you want to start a long-running command and have it keep running after you exit the shell, use the
nohup command and an ampersand (&):

nohup 'command-line' &

For example:

nohup sort -u file1 >output 2>>outerr &

Ending the nohup command with an & makes the command run in the background, even after you exit the
shell.

To exit the shell in this situation, enter the exit command. nohup ensures that the command does not
end when the creating process ends. No applications survive a logoff or restart of CMS.

The nohup command is most practical when issued from a subshell. If you enter nohup from the login
shell, the shell will end and the background command will continue. CMS, however, will not read
commands from the command line until the background command ends. Other activity in the CMS
session, such as active windows under the CMS desktop will continue to be active.

Using Job Control in the Shell

Chapter 7. Using Job Control in the Shell 71

Using Job Control in the Shell

72 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 8. Running OpenExtensions Applications

Because an OpenExtensions application is simply a program that uses POSIX services, it need not be
distinguished from any other CMS application. Users can run OpenExtensions applications without
entering the shell. How the application is invoked depends upon whether it resides in the CMS record file
system or in the byte file system (BFS).

If the OpenExtensions application resides on an accessed minidisk or SFS directory, it has a CMS file ID in
which the file name is the name of the application and the file type is MODULE. It is run, like any other
CMS module file, by entering its name at the Ready; prompt. If the application resides in BFS, it must be
run by using the OPENVM RUN command at the Ready; prompt. BFS directories are not searched during
CMS command resolution, so no BFS files will ever be invoked as a result of entering a command at the
CMS command line. In addition, applications in BFS have directory paths associated with them and
names longer than the eight characters of a CMS command name.

If you want to run the file application1.a in the directory /u/home/apps, you would issue:

OPENVM RUN /u/home/apps/application1.a

CMS keeps track of the current working directory, so you could first change the working directory to the
directory that contains your application and then avoid entering it on the OPENVM RUN command. For
example,

OPENVM SET DIRECTORY /u/home/apps
OPENVM RUN application1.a

When running OpenExtensions programs, you should be aware of the following differences between how
programs are started in the shell environment compared with how they are started directly from CMS:

• The shell has mechanisms for setting environment variables that can be interrogated by applications. In
CMS, the principle way to set environment variables is to set them in the CENV group of GLOBALV. The
C/C++ OpenExtensions application will initialize its environment variables from this GLOBALV group.

If the OpenExtensions application is started through the OPENVM RUN command, the environment
variables HOME, LOGNAME, PATH, and SHELL are initialized even if they are not defined in GLOBALV.
LOGNAME is set to the lowercase representation of the z/VM user ID. HOME, PATH, and SHELL default
to /, /bin, and /bin/sh, respectively.

• If an OpenExtensions application resides on an accessed minidisk or SFS directory, it can be invoked by
name from the CMS command line. However, because it does not reside in BFS, it has no BFS
permission settings. This means that all such OpenExtensions applications are executable, as if they
had the execute permission set.

• To start an application in a strictly-conforming POSIX environment, you must start from the shell or by
means of the OPENVM RUN command. An application started from the CMS command line is not
guaranteed to have the environment variables HOME, LOGNAME, and PATH appropriately set. The user
is responsible for giving values for these variables if the application has dependencies on them.

• An external link can be created in BFS that points to a CMS module in the record file system. This
program can be run through the OPENVM RUN command, but care must be taken to assure that
programs set up to be so invoked are capable of handling the POSIX entry conditions as defined by the
exec() function.

• Applications started by using OPENVM RUN or the shell are automatically given the run-time option
POSIX(ON). Applications invoked from the command line must be given the POSIX(ON) option
explicitly. This is done either by coding a #pragma runopts(POSIX(ON)) statement in the C/C++
application, or by passing the run-time option at invocation time. This is done by specifying the option
after the command name and followed by a slash (/). The parameters passed to the command follow

Running OpenExtensions Applications

© Copyright IBM Corp. 1993, 2020 73

the slash. For example, to invoke the program myappl and pass it two parameters, parm1 and parm2,
the user would enter the following at the command line:

 myappl posix(on) / parm1 parm2

Multiple run-time options can be specified. To invoke the program mentioned above and pass it an
environment variable in addition to those defined by GLOBALV, the user would enter:

 myappl env('OUTDIR=/tmp/out1') posix(on) / parm1 parm2

Note: OpenExtensions services make use of CMS Multitasking services. An application that uses
OpenExtensions services cannot issue OpenExtensions calls from interrupt handlers and cannot use non-
CMS Multitasking wait services. However, if these conditions cannot be met, then some problems can be
avoided by calling openvmf (BPX1VM5) with function code VM5_RELEASE_TOKEN to release BFS file
tokens immediately before entering any kind of non-CMS Multitasking wait state.

Running OpenExtensions Applications

74 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 9. Communicating with Other Users

Within the shell, you can send and receive messages using the mailx command. This command sends
the message to a system-specified mail file. When the shell user receiving the message is ready to read
messages, he or she uses mailx to see what messages have arrived and to read them.

You can also use CMS facilities to communicate with other users, including those on remote systems. The
TELL command sends short messages to a user or set of users. The NOTE command puts the user in an
editing session to compose a longer message. This note is then sent to one or more users. The note is
subsequently read by using the PEEK command to view the note file in the reader.

The advantage of using the CMS TELL and NOTE commands is that they allow communication with all
CMS users, not just those using the OpenExtensions shell. mailx cannot be used to send messages to
users on other VM systems.

Sending Messages
You can send a message using:

• The mailx command to communicate in the shell. If you use mailx to send a message, your
correspondent must use mailx to receive it.

• CMS commands NOTE, TELL or MSG to communicate with any CMS user (including OpenExtensions
users). If you use CMS to send a mail message, your correspondent must use CMS to receive it.

To Another User
If you use the shell frequently, you can use the mailx shell command.

Administrators and users can customize the behavior of mailx in a number of ways by selecting variables
and setting them in files named /etc/mailx.rc and $HOME/.mailrc. Some variables apply for the
duration of any session; you can set or reset others within a session.

The system programmer can set up a list of variables (using the set command) in the /etc/mailx.rc
file. You can use these values as a default or you can set up a $HOME/.mailrc file that sets these
variables for your personal use. These variables are described in z/VM: OpenExtensions Commands
Reference under the mailx command description.

You can reset certain variables during a session, and when entering mailx you can specify that the
variables in the /etc/mailx.rc file are not to be used.

You can send a message to one or more users at a time. The following example is a message sent to
several users. The words in italics are output from mailx itself.

 mailx macneil
 Subject:
 Reminder
 Our work group meets today at 10:30.
 Let's get together in the library.
 ~c smitha emilig fabish
 ~.
 EOT

On the first line, the message is addressed just to macneil. The ~c line adds people who will receive
copies of the message.

The ~. line identifies the end of the message and indicates to mailx that you are ready to send it. After
you type that line and press ENTER, the message is sent.

Here are the steps:

1. Type mailx name, where name is a login name.

Communicating

© Copyright IBM Corp. 1993, 2020 75

2. The system prompts you for a subject. You can type a word or phrase and press ENTER.
3. Start typing the message. At the end of each line, press ENTER. In the preceding example, you would

press ENTER after Reminder, 10:30., library., and fabish.
4. To copy other people on the note, type ~c before their login names.
5. To end the message and transmit it, type ~. and press ENTER. The system displays an EOT message.

To a Distribution List
You can send the same message to multiple users at the same time by using a distribution list.

If you use mailx to send a message, you can specify the address of each OpenExtensions user you want
to receive the message. The simplest address is the CMS user ID. For example:

mailx pfeif lowell eliza fabish

requests that a message be sent to pfeif, lowell, eliza, and fabish. The shell then prompts for the
subject and text of the message to be sent.

To send a message to a list of people, you can specify an address alias that contains a list of login names.
For example, to set up an alias for the test team, you might enter the command:

alias test pfunt lulu detsch naga

at the mailx prompt (because this is a mailx command, not a shell command). After you do that, when
you send a message to the address alias test, it will go to all the login names you specified.

Aliases that are entered interactively remain in effect only for the current session. If you want to make the
address alias permanent, put the alias command in your $HOME/.mailrc.

To a VM Operator
To send a message to the VM operator, you should use the CMS TELL command. VM recognizes the user
ID of OP as the system operator. For example, to send a message to the operator enter:

tell op are the tapes ready yet?

Recall that the TELL command is a CMS command, so to enter the command from the shell you will need
to prefix it with cms.

Receiving Messages from Other Users
The simplest way to read incoming messages is to enter the command mailx. This starts an interactive
session that lets you read your mail and perform other actions, such as displaying new messages and
deleting old ones. If you do not have any mail, you will get a message telling you so.

When you have mail, the mail program shows you a list of messages similar to this one:

mailx xxxxxxx Type ? for Help.
"/usr/mail/smitha/...": 3 messages 3 new
>N 1 cliflwr Thu Jul 15 14:28 6/93 testing
 N 2 homebrw Thu Jul 15 15:03 5/81 lunch plans
 N 3 brian Thu Jul 15 16:17 6/95 softball
?

The first line is the mailx program banner; xxxxxxx is information about the version of mailx. As
indicated, you can type ? to see some help information. The second line displays the name of the mailbox
being used, /usr/mail/smitha/, followed by the number of messages in the mailbox, and their status.
Then you see a list of three messages:

• Number 1 was sent by cliflwr and has the subject 'testing'. It was sent on July 15 at 2:28 p.m., and
contains 6 lines and 93 characters.

Communicating

76 z/VM: z/VM 7.2 OpenExtensions User's Guide

• Number 2 was sent by homebrw and has the subject 'lunch plans'. It was sent on July 15 at 3:03 p.m.,
and contains 5 lines and 81 characters.

• Number 3 was sent by brian and has the subject 'softball'. It was sent on July 15 at 4:17 p.m., and
contains 6 lines and 95 characters.

The question mark (?) is the mailx program prompt; it indicates that you can enter mailx subcommands
now. To read the first message, try the subcommand 1, and to read the subsequent message, try the
subcommand n (next message):

? 1
Message 1:
From cliflwr Thu Jul 15 14:28
To: smitha
Subject: testing

I'm setting up a meeting to test the toolkit
on Monday the 19th at 10AM.
Let me know if you can make it.
?
? n
Message 2:
From homebrw Thu Jul 15 15:03
To: smitha
Subject: lunch plans

Have lunch plans for tomorrow? Want to get pizza?
?

The question mark (?) prompt appears after the displayed message. You can also enter the n
subcommand with a number to specify a particular message; for example, n 3 displays the message
about softball. Now you can choose what to do with the message: reply to it, save it, or delete it.

Replying to Mail
At the question mark (?) prompt, you can use the R (reply to sender) subcommand to reply to a particular
message. This is an uppercase R: it differs from the r subcommand, which sends the reply to everyone
who sent and received the message. When you give the R subcommand, follow it with the message
number. For example:

? R 1
To: cliflwr
Subject: Re: testing

Yes, I can make the meeting. where ?
~.
EOT

The EOT indicates that your reply has been sent.

Saving and Deleting Mail
If you exit mailx without specifically deleting or saving your messages, the system saves those
messages.

To save a message, use the s subcommand and give the name of the file you want to save the message in;
for example:

s climail

If this is an existing file, the message is appended to it. If the file does not exist, it is created.

To delete a message, use the d subcommand and give the number of the message you want to delete:

? d 1
?

The mail program deletes message number 1 and returns another ? prompt.

Communicating

Chapter 9. Communicating with Other Users 77

Ending the mailx Program
To exit from mailx, use the q (quit) subcommand:

? q
$

The shell prompt indicates that you have left mailx and can enter shell commands again.

For more information on mailx, see z/VM: OpenExtensions Commands Reference.

Communicating

78 z/VM: z/VM 7.2 OpenExtensions User's Guide

Part 3. The File System

© Copyright IBM Corp. 1993, 2020 79

80 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 10. An Introduction to the Byte File System

OpenExtensions files are organized in a hierarchy, as in a UNIX system. All files are members of a
directory, and each directory is in turn a member of another directory at a higher level in the hierarchy.
The highest level of the hierarchy is the BFS file space. Typically, a user has all or part of a BFS file space
mounted as the root directory.

VM views an entire BFS file space as a Byte File System. Each Byte File System is a mountable file
system.

The root file system is the first file system mounted. Subsequent file systems can be mounted on any
directory within the root file system or on a directory within any mounted file system.

A file in the byte file system is called a BFS file. BFS files are byte-oriented, rather than record-oriented,
like CMS record files on minidisks or in the Shared File System (SFS). You can copy BFS files into CMS
record files, and you can copy CMS record files into the Byte File System.

Figure 3. The Byte File System

The OpenExtensions shell and utilities typically impose a line orientation on the byte-oriented files. A line
is a stream of bytes terminated with a <newline> character. A line terminated by a <newline> character is
sometimes referred to as a record. So, there is a single <newline> character between every pair of
adjacent records. Text files use the <newline> character to delimit lines; binary files do not.

Byte File System

© Copyright IBM Corp. 1993, 2020 81

Figure 4. Comparison of CMS Record Files and the Byte File System

In Figure 4 on page 82, you see that:

• The user's 191 disk or SFS file space is analogous to a user directory (/u/smitha) in the byte file
system. Typically, one user controls all the files which reside on his 191 minidisk or within his SFS file
space. For example, the files belonging to the CMS user ID SMITHA all reside in file space SMITHA.
There could be a file C MODULE in SMITHA.TEST1 and SMITHA.TEST2 and a LIST EXEC file in
SMITHA.TEST1 and SMITHA.TEST2.

In the byte file system, SMITHA would have a user directory named /u/smitha; under that directory
there could be directories named /u/smitha/test1 and /u/smitha/test2.

In z/VM, SMITHA could also have his own byte file system. Whether you have your own byte file system
or your own user directory is a decision made by your system programmer.

Byte File System

82 z/VM: z/VM 7.2 OpenExtensions User's Guide

• An SFS file space is most akin to a user directory in the byte file system. In an SFS directory such as
SMITHA in the VMSYSU file pool, you could have subdirectories PGMA, PGMB, and so on—for example,
SMITHA.TEST1 can have a PGMA MODULE and a PGMB MODULE. Likewise, a subdirectory such as /u/
smitha/test1 can hold many files, such as pgma.c, pgmb.c, and so on.

All data written to the byte file system can be read by all programs as soon as it is written. Data is written
to the byte file system when a program issues an fsync().

Before learning about byte file system capabilities, you need to understand these concepts:

• The root file system and mountable byte file systems
• Directories
• Files
• Path and path name

The Root File System and Mountable Byte File System
The system programmer (SFS administrator) defines one or more Byte File Systems; subsequently, a user
can mount one or more byte file systems or pieces of byte file systems or remote file systems on
directories within the file hierarchy. Altogether, the root file system and mountable file systems comprise
the user's view of the Byte File System used by OPENVM commands.

A directory can include a file that is itself a directory (sometimes referred to as a subdirectory) and so on,
through a number of levels in a hierarchical arrangement. For example, in Figure 5 on page 83, the slash
(/) symbol at the top represents the root directory, from which all other directories are descended. There
are seven directories branching from the root. Each of these directories, in turn, has its own system of
subdirectories and files. For example, tty is a file in the directory /dev and localedef is a subdirectory
in the directory /usr/lib/nls.

Figure 5. Organization of the Byte File System

In the BFS, such I/O destinations as terminals, sockets, and named pipes are defined as files. Those are
called special files.

Directories
Files are grouped in a directory, which is a special kind of file consisting of the names of a set of files and
other information about them. Usually, the files in a directory are related to each other in some way. The

Byte File System

Chapter 10. An Introduction to the Byte File System 83

files listed can be thought of as being "kept" in that directory (although their actual locations in physical
storage are managed by the operating system).

A directory can have subdirectories. For example, in a user's directory /projectx, there might be
subdirectories such as /projectx/design and /projectx/test.

When you first enter the OpenExtensions shell, you are automatically placed in your home directory,
which is defined when your user ID is defined.

Files
There are four other types of files that can exist in the BFS, in addition to directories:

• A regular file is an identifiable (named) unit of text or binary data information. A file can be C/C++
source code, a list of names or places, a printer-formatted document, a string of numbers organized in a
certain way, an employee record containing smaller information units in fields, a memo, or many other
possible things. A user or an application program must understand how to access and use the individual
increments of information (such as employee record fields) within a file.

• A character special file is a file that defines

– A terminal (for example, /dev/tty).
– A null file (for example, /dev/null).
– A file descriptor file (for example, /dev/fdn).
– A path name that represents a UNIX domain socket. The path name is assigned by the application

programmer; there is no convention for the name. The socket library creates the file when a server
program readies itself to accept client connections.

• A FIFO special file is a file typically used to send data from one process to another so that the receiving
process reads the data first-in-first-out (FIFO). A FIFO special file is also known as a named pipe.

• A symbolic link is a file that points to some other BFS file. It permits users and programs to refer to that
other file by either the other file's own path name or the path name of the symbolic link. You can create
a symbolic link to a file or a directory.

• An external link can be thought of as a type of symbolic link: a link to an object outside of the byte file
system. Typically, it contains information about how to access a CMS record file.

Path names representing special files can be used anywhere path names for regular files can be used,
such as redirection constructs or in the syntax of a command that requires a path name.

Files Not in the BFS
There are two types of unnamed files that do not exist in the BFS:

• An unnamed pipe. A pipe typically sends data from one process to another; the two ends of a pipe can
be used in a single program task. A pipe does not have a name in the byte file system, and it vanishes
when the last process using it closes it.

A program creates a pipe with the pipe() function.
• A socket. A socket is a method of communication between two processes that allows communication in

two directions, in contrast to pipes, which allow communication in only one direction. The processes
using a socket can be on the same system or on different systems in the same network.

A program creates a socket with the socket() function.

Path and Path Name
The set of names required to specify a particular file in a hierarchy of directories is called the path to the
file, which you specify as a path name. Path names are used as arguments for commands.

Byte File System

84 z/VM: z/VM 7.2 OpenExtensions User's Guide

An absolute path name is a sequence that begins with a slash for the root, followed by one or more
directory names separated with slashes, and ends with a directory name or a file name. The search for the
file begins at the root and continues through the elements in the path name until it gets to the final name.
For example: /u/smitha/projectb/plans/1dft is the absolute path name for 1dft, the first draft of
the plans for a particular project that a user named Alice Smith (SMITHA) is working on.

A fully-qualified path name is a sequence that begins with the special keyword string /../vmbfs:, a file
pool identifier, and a byte file system identifier. This special path name format allows the use of BFS files
without mounting the byte file system. An example of a fully-qualified path name for file PGMA is: /../
vmbfs:vmsysu:bfs/u/smitha/pgma.

A fully-qualified Network File System (NFS) path name is a sequence that begins with the special keyword
string /../nfs, a foreign host name followed by a slash, then the name of the remote directory. This special
path name format cannot be used without mounting the file system.

Instead of using the absolute or fully-qualified path name with shell and OPENVM commands, you can
specify a path name as relative to the working directory; this is called the relative path name. In most
cases, a user can specify a particular file without having to use its absolute path name. A relative path
name does not have a / at the beginning, and the search for the file begins in the working directory. For
example, if Alice Smith is working in the directory projectb, she can specify the relative path name for
the file /u/smitha/projectb/plans/1dft as plans/1dft.

A path name can be up to 1023 characters long, including all directory names, file names, and separating
slashes. For path names and file names, use characters from the POSIX portable character set.

The system performs path name resolution to resolve a path name to a particular file in a file hierarchy.
The system searches from element to element in a path name in order to find the file.

Requirement for a Fully-Qualified Path Name
In one situation, a fully-qualified path name is required. The OPENVM MOUNT command requires that you
use the fully-qualified form of the BFS, BFS subdirectory, or NFS path name.

You may also specify a fully-qualified NFS path name on OPENVM UNMOUNT.

Resolving a Symbolic Link in a Path Name
A symbolic link is a file that contains the path name for another file; that path name can be relative or
absolute. If a symbolic link contains a relative path name, the path name is relative to the directory
containing the symbolic link.

If you use a symbolic link as a component of a path name, during path name resolution the original path
name is changed. How it changes depends on whether the symbolic link contains a relative or absolute
path name. For example, consider the path name /u/turbo/dlg/lev1:

• If dlg is a symbolic link containing the relative path name dbopt/pgma/src, dlg is replaced by the
relative path name. This is how it resolves:

/u/turbo/dlg/lev1 → /u/turbo/dbopt/pgma/src/lev1.
• If dlg is a symbolic link containing the absolute path name /usr/bin/dbopt/pgma/src, then the

components in the original path name that preceded dlg are replaced by the absolute path name in the
symbolic link. This is how it resolves:

/u/turbo/dlg/lev1 → /usr/bin/dbopt/pgma/src/lev1.

Up to eight symbolic links can be resolved in a path name.

External Links
An external link can be thought of as a type of symbolic link that refers to an object outside of the BFS.
See “Creating an External Link” on page 103 for more information and z/VM: OpenExtensions Commands
Reference for more about the OPENVM CREATE EXTLINK command.

Byte File System

Chapter 10. An Introduction to the Byte File System 85

Using Commands to Work with Directories and Files
You can use OPENVM commands to do certain tasks with the byte file system. Some of these are tasks
that UNIX users traditionally perform while in the shell. Because these are CMS commands, you can
perform these byte file system tasks whether or not you have the OpenExtensions Shell and Utilities
installed.

The following table describes the OPENVM command and the equivalent shell command.

Function Shell CMS

Change a working directory. cd OPENVM SET DIRECTORY

Change the group owner of a file
or directory. To use this
command, you must be a
superuser or the owner of the file
or directory.

chgrp OPENVM OWNER

Change access permission to a
directory or file. To use this
command, you must have
appropriate privileges—you must
have write authority, or be the file
owner, or be a superuser.

chmod OPENVM PERMIT

Change the owner or group of a
file or directory. To use this
command, you must be a
superuser.

chown OPENVM OWNER

Copy a file. cp OPENVM GETBFS

Copy a file. cp OPENVM PUTBFS

Create or edit text in a file. ed XEDIT

Link another name to a file (in
addition to its original name).

ln OPENVM CREATE LINK

List the files in a directory. ls OPENVM LISTFILE

Create a directory. The mkdir
command has an option for
creating intermediate directories
in a path name.

mkdir OPENVM CREATE DIRECTORY

Make a named pipe (FIFO special
file).

mkfifo -

Make a character special file or a
named pipe (FIFO special file). To
use this command to create a
character special file, you must
be a superuser.

mknod -

Move a file from one directory to
another directory, or rename a
file or directory.

mv OPENVM RENAME

Display your working directory. pwd OPENVM QUERY DIRECTORY

Byte File System

86 z/VM: z/VM 7.2 OpenExtensions User's Guide

Function Shell CMS

Remove (erase, or delete) a file
from a directory.

rm OPENVM ERASE

Remove (erase, or delete) a
directory that is empty of files.

rmdir OPENVM ERASE

Add a mountable byte file system
or byte file system sub-directory
tree to the file hierarchy.

- OPENVM MOUNT

Create a byte file system path
name to be used to reference a
file or other data that resides
outside of the byte file system.

- OPENVM CREATE EXTLINK

Create a byte file system path
name to be used to reference an
object residing in one byte file
system using a path name in the
same or another byte file system.

ln OPENVM CREATE SYMLINK

Display information associated
with symbolic or external links.

- OPENVM QUERY LINK

Define the file creation mask to
be used when creating a BFS
object.

umask OPENVM SET MASK

Display the file creation mask
values in effect.

umask OPENVM QUERY MASK

Display what is mounted in your
hierarchy.

- OPENVM QUERY MOUNT

Remove a byte file system or
byte file system subdirectory tree
from your hierarchy.

- OPENVM UNMOUNT

Execute an application that
resides in the byte file system, or
has an external link to a CMS
module in the record file system.

Just type in the
name of the
application at
the shell
prompt.

OPENVM RUN

Process archive tapes. - OPENVM PARCHIVE

Where You Can Enter a CMS Command
For example, you can enter a CMS command:

• At the CMS Ready; prompt.
• At the XEDIT ====> prompt.
• In the shell, by prefixing the command with cms.

CMS maintains a working directory, primarily to support execution of OpenExtensions applications
outside the shell. If you specify a relative path name on one of the OPENVM commands provided by CMS,
or on XEDIT, the working directory as set by OPENVM SET DIRECTORY is used to construct the full
directory name.

Byte File System

Chapter 10. An Introduction to the Byte File System 87

Locking
Locking is coordinated across both local and remote users. No locking is done for objects in NFS-mounted
file systems.

External Links
An external link can be thought of as a symbolic link to non-byte file system files. It associates a CMS
record file with a BFS path name. The external link lets you transparently access a CMS record file using a
POSIX-conforming path name. For example, you can create an external link to map /u/smitha/pgma to
PGMA MODULE A for the CMS record file. See z/VM: OpenExtensions Commands Reference for more
information about OPENVM CREATE EXTLINK.

Security for the File System
No additional security product is necessary for the byte file system. Security is ensured as part of the base
product.

Byte File System

88 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 11. Working with Directories

This chapter covers the following topics:

• The working directory
• Displaying the name of your working directory
• Changing directories
• Creating a directory
• Removing a directory
• Listing directory contents
• Comparing directory contents
• Finding a directory or file

The Working Directory
CMS and the shell always identify a particular directory within which you are assumed to be working. This
directory is known as the working directory (also known as the current working directory). To work with a
file within your working directory, you need specify only the file name with a command. If you want to
work with a file in another directory, you can change your working directory, using OPENVM SET
DIRECTORY or the cd shell command and naming the new directory. (Instead of changing directories, you
could use relative notation or fully-qualified notation to access a file in a different directory; see “Using
Notations for Relative Path Names” on page 90 for more information.)

When you type the OPENVM SHELL command and begin working in the shell environment, you are first
placed in your home directory as your working directory.

Displaying the Name of Your Working Directory
To check on the name of the directory you are currently working in, just enter the OPENVM QUERY
DIRECTORY command, or the pwd shell command (print working directory).

If Alice Smith is working in her home directory, for example, the system displays the name of her working
directory in this form is she used the pwd command:

/u/smitha

/u/smitha is the pathname of her working directory.

If Alice Smith enters:

OPENVM SET DIRECTORY projecta
 or
cd projecta

the projecta subdirectory of her home directory becomes her working directory. If she enters:

OPENVM QUERY DIRECTORY
 or
pwd

it displays (for pwd): /u/smitha/projecta.

Note: A directory name can be specified in two ways, with or without a trailing slash; for example:

/u/smitha/projecta
/u/smitha/projecta/

Working with Directories

© Copyright IBM Corp. 1993, 2020 89

In this book, a trailing slash is not used.

Changing Directories
Use OPENVM SET DIRECTORY or the cd shell command to change from one working directory to
another. If you have permission to access the directory, you can move to any directory in the byte file
system by using one of these commands and the path name for the directory:

OPENVM SET DIRECTORY pathname
 or
cd pathname

See Chapter 13, “Handling Security for Your Files,” on page 121 for more information on directory
permissions.

When you want to go to your home directory, just enter the cd shell command with no arguments:

cd

To change to a directory other than your home directory, you must supply the path name. For example, if
Alice Smith is working in her home directory (/u/smitha) and she wants to switch to her projectb
directory, she enters:

OPENVM SET DIRECTORY projectb
 or
cd projectb

To check that she has changed directories, Alice enters:

OPENVM QUERY DIRECTORY
 or
pwd

and the system displays (for pwd): /u/smitha/projectb.

Using Notations for Relative Path Names
To change directories quickly or to work with a file name in another directory, use these relative path
name notations:

dot notation (. and ..)
tilde notation (~)

Dot Notation

A convention used in the shell environment is to use . (dot) and .. (dot dot) to represent certain
directories.
. (dot)

This refers to the working directory.
.. (dot dot)

This refers to the parent directory of your working directory, immediately above your working
directory in the byte file system structure.

If one of these is used as the first element in a relative path name, it refers to your working directory. If ..
is used alone, it refers to the parent of your working directory.

For example, if you are working in /bin/util/src, you can go to /bin/util by entering:

cd ..

Tilde Notation

A ~ (tilde) can be used from the OpenExtensions shell in several forms:

Working with Directories

90 z/VM: z/VM 7.2 OpenExtensions User's Guide

Notation Meaning

~ Your home directory (that is, the directory given by your HOME environment
variable). The command:

cp ~/file1 file2

copies file1 in your home directory into file2 in your working directory. This
works regardless of what your working directory is.

cp file1 ~/dir

copies file1 from the working directory into dir in your home directory (if dir is
an existing directory.)

~␠+ The variable PWD (which contains the name of your working directory).

~␠– The variable OLDPWD (which gives the name of the working directory you were in
immediately before the last cd command).

~login name That user's home directory. However, the OpenExtensions shell does not have
access to variables in other user's virtual machines, so any login name including
the issuer's will resolve to / (a slash).

Note: In the OpenExtensions shell, your login name is your VM user ID.

Example

For example, suppose you are working in the shell in /u/turbo/prog/src and you want to display the
file limits in the directory /u/turbo/appl/hdr. You could refer to the file in several different ways:

cat ../../appl/hdr/limits
cat /u/turbo/appl/hdr/limits

and if you are logged on as turbo, you could also use:

cat ~/appl/hdr/limits

Creating a Directory

Using CMS
To create a new directory, enter:

OPENVM CRE DIR directory_name

where directory_name specifies the path name of the directory to be created. The path name can be an
absolute path name, a relative path name, or a fully-qualified path name. Specify the name, which can be
up to 1023 characters long, in single quotation marks or double quotation marks when any of the
following characters are part of the name:

A blank space
(

Left parenthesis
)

Right parenthesis
‘

A single quotation mark

Working with Directories

Chapter 11. Working with Directories 91

“
A double quotation mark

*
Asterisk

if it contains blanks or other special characters. The OPENVM SET MASK command can be used before
the OPENVM CREATE DIRECTORY command to mask off permissions when it is created, or the OPENVM
PERMIT command can be used after the OPENVM CREATE DIR command to change them after the
directory is created.

If user Alice Smith is in her current working directory /u/smitha and wants to create a directory umods
using a relative path name, she would enter:

OPENVM CRE DIR umods

The directory umods is one level below her working directory smitha; its full path name is /u/smitha/
umods.

Using the Shell

To create a new directory, enter:

mkdir pathname

For example, if Alice Smith is working in her home directory, smitha, and she wants to create a new
directory, projecta, under her working directory, she would enter:

mkdir projecta

The default mode (read-write-execute permissions) for a directory created with mkdir is:

owner=rwx
group=r-x
other=r-x

Here execute permission means permission to search the directory. The octal representation of these
permissions is 755 (7 for the owner permission bits; 5 for the group permission bits; 5 for the other
permission bits).

The new directory, projecta, is one level below her working directory. Figure 6 on page 93 shows this
relationship. If you do not specify an absolute path name for the directory to be created, the shell creates
the new directory as a subdirectory of whatever your working directory is at the time you enter the
command.

Working with Directories

92 z/VM: z/VM 7.2 OpenExtensions User's Guide

Figure 6. Creating a New Directory

If you want to create a new directory that is not under your working directory, specify an absolute path
name or a fully-qualified path name. Both directory names and file names can be up to 255 characters
long. You may want to adopt some naming convention that lets you distinguish between directory names
and file names.

Your business may have adopted naming conventions for directories. For example, a typical convention is
for each user to be assigned a directory based on the VM user ID to make the name unique. Only that user
would have write access to the directory. For information on how to change access permissions for a
directory or file so that other users can read or write to it, see Chapter 13, “Handling Security for Your
Files,” on page 121.

Removing a Directory

Using CMS
You can remove an empty directory (one with no files or subdirectories) from the byte file system with the
OPENVM ERASE command. The format of the command is:

OPENVM ERASE directory

Working with Directories

Chapter 11. Working with Directories 93

Using the Shell

You can remove an empty directory (one with no files or subdirectories) from the byte file system with the
rmdir command. The format of the command is:

rmdir directory

To remove your working directory, you must first move into another working directory.

Attention:

This will remove the entire subtree.

To delete the files in a directory and the directory itself in one step from the shell, use the rm
command with the -r option. The format of the command is:

rm -r file

where file is the name of the directory. You should also use the -i option so that you will be
prompted to confirm the deletions:

rm -ri file

Listing Directory Contents

Using CMS
The OPENVM LISTFILE command lists the contents of a directory. To see the contents of your working
directory, enter:

OPENVM LIS

To use the (SUBDIRECTORY option to see the contents of directory /sam and all of its subdirectories,
enter:

OPENVM LIS /SAM (SUBD

You can request different types of information from the OPENVM LISTFILE command. Using different
options, you can ask for information about byte file system attributes, names, and owners.

• Attributes

To display attribute information about objects in your current working directory and the directories
under it, enter:

OPENVM LIS (SUBDIR
 or
OPENVM LIS (ATTR SUBDIR

You will see a display that includes path names, update times, and other statistics like this one:

Directory = '/'
Update-Dt Update-Tm Type Links Bytes Path name component
02/02/1995 12:23:55 D - - 'International_data'
02/02/1995 12:22:55 D - - 'US_cities_and_towns'
02/15/1995 14:32:35 F 1 20956 'US_cities_and_towns/Anaheim_File'
02/15/1995 14:32:35 F 1 2346 'US_cities_and_towns/Boston_File'
02/15/1995 14:32:35 F 2 10956 'US_cities_and_towns/Detroit_File'
02/15/1995 14:32:35 F 1 34556 'US_cities_and_towns/Endicott_File'

• Names

To display information about names, enter:

OPENVM LIS (SUBD NAMES

Working with Directories

94 z/VM: z/VM 7.2 OpenExtensions User's Guide

You will see a display that includes a special system-generated file name and file type. If you are an SFS
administrator, this allows you to use BFS files using some CMS record file system commands. (See
z/VM: CMS Commands and Utilities Reference for more information.) Here is an example of what you
might see:

Directory = '/'
File name File type Byte file system Type Path name component
3 0 SERV1009:BFS1. D 'International_data'
2 0 SERV1009:BFS1. D 'US_cities_and_towns'
4 0 SERV1009:BFS1. F 'US_cities_and_towns/Anaheim_File'
5 0 SERV1009:BFS1. F 'US_cities_and_towns/Boston_File'
6 0 SERV1009:BFS1. F 'US_cities_and_towns/Detroit_File'
7 0 SERV1009:BFS1. F 'US_cities_and_towns/Endicott_File'
Ready;

Directory ='bfsdname'
Filename Filetype Byte File System Type Path name Component
 fn ft bfsid t pname

• Owners

To display information about owners, enter:

OPENVM LIS /MYDIR (OWNERS

You will see a display in this format:

Directory ='bfsdname'
POSIX UID POSIX GID Permissions Type Path name Component
 uid gid rwx rwx rwx t pname

Using the Shell

The ls command lists the contents of a directory. To see the contents of your working directory, enter:

ls

To list the contents of a different directory, add the relative or absolute name of the directory you want to
examine, as in:

ls dira/dirb
ls /abc/def/ghi

ls displays directory contents in alphabetic order. Typical ls output looks like:

bin csrb.cpy fifotest makefl temp.t
cc etc helplist phones.com totals

ls does not normally distinguish between directories, regular files, and special files. If you want a list of
directory contents that does distinguish between file types, use the -F option. Entering:

ls –F

gives you output in the form:

bin/ csrb.cpy fifotest| makefl/ temp.t
cc/ etc/ helplist phones.com* totals/

The symbols following the file names indicate the type of file:
/

Identifies a directory

Working with Directories

Chapter 11. Working with Directories 95

*
Identifies an executable file

|
Identifies a FIFO special file

@
Identifies a symbolic link

&
Identifies an external link

=
Identifies a socket file

If there is no character following the file name, the file is none of the above.

ls can list the contents of more than one directory at a time. For example:

ls dir1 dir2

lists the contents of the two given directories, one after the other. Try this command on a pair of
directories to see what format ls uses.

Comparing Directory Contents

Using the Shell
You can use the shell command:

diff -r dir1 dir2

to check whole directories for change. With the -r option, diff compares the files in dir1 with the files
in dir2 that have the same names.

This command can be useful if you have two directories that hold different versions of the same files and
subdirectories.

You can use the -r option with other commands. For example:

cp -r dir1 dir2

copies all the files and subdirectories from dir1 to dir2.

rm -r dir

removes all the files and subdirectories under dir and then removes dir itself.

Finding a Directory or File

Using the Shell
The shell command find searches a directory and lists the names of all the files having a given
characteristic or set of characteristics. The simplest version of the command is:

find dirname

which displays the names of all files under the given directory, including files in subdirectories under the
directory.

find dirname –name pattern

Working with Directories

96 z/VM: z/VM 7.2 OpenExtensions User's Guide

displays the names of all files whose names have the form specified in pattern. For example,

find abc –name '*.lst'

lists the names of all files under the directory abc with the file name extension .lst. (The asterisk (*) is a
wildcard character that stands for any sequence of zero or more characters.) Using find, you can locate
files quickly, even when you have many directories and subdirectories. For more information on the find
command, see z/VM: OpenExtensions Commands Reference.

Working with Directories

Chapter 11. Working with Directories 97

Working with Directories

98 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 12. Working with Files

This chapter covers the topics:

• Using an editor to create a file
• Naming files
• Deleting a file
• Identifying a file by its inode number
• Creating links
• Deleting links
• Renaming or moving a file or directory
• Comparing files
• Sorting file contents
• Counting lines, words, and bytes in a file
• Searching files by using pattern matching
• Browsing files
• Simultaneous access to a file
• Backing up and restoring files

Using an Editor to Create a File
When working at the host system, you have three editors to use to create and change files:

• XEDIT, a full-screen editor that you can call from CMS or the shell
• The ed editor, a line editor that you can call from the shell or CMS
• The sed stream editor, a noninteractive editor. It is intended for systematic editing; you call the editor

with a file of editing commands and a target data file and it produces an edited target file, with no user
interaction.

For details about the editors, see Chapter 14, “Editing Files,” on page 131.

You can control access to your directories and files. When you first create a directory or file, access
permissions are set for them. You can change these permissions whenever you want. See Chapter 13,
“Handling Security for Your Files,” on page 121 for more information on access permissions.

Naming Files
A file name can be up to 255 characters long. To be portable, the file name should use only the characters
in the POSIX portable file name character set:

• Uppercase or lowercase A to Z
• Numbers 0 to 9
• Period (.)
• Underscore (_)
• Hyphen (-)

Do not include any nulls or slash characters in a file name.

Doublebyte characters are not supported in a file name and are treated as singlebyte data. Using
doublebyte characters in a file name may cause problems. For instance, if you use a doublebyte character

Working with Files

© Copyright IBM Corp. 1993, 2020 99

in which one of the bytes is a . (dot) or ⁄ (slash), the file system treats this as a special delimiter in the
path name.

The OPENVM commands and the OpenExtensions shell are case-sensitive and distinguish characters as
either uppercase or lowercase. Therefore, FILE1 is not the same as file1.

A file name can include one or more suffixes, or extensions, that indicate its file type. An extension
consists of a period (.) and several characters. For example, files that are C code could have the
extension .c, as in the file name dbmod3.c. Having groups of files with identical suffixes makes it easier
to run commands against many files at the same time.

Note: If you want to use c89 or cxx to compile and build, C source file names must have a .c suffix. C++
source file names must have a .cpp or .cxx suffix.

Processing in Uppercase and Lowercase
Case-sensitive processing means that an environment distinguishes and handles characters as either
uppercase or lowercase. Therefore, FILE1 is not the same file as file1. The availability of case-sensitive
processing depends on the environment:
The shell

Case-sensitive. In the file system, you can use mixed-case file names.
CMS

Case-sensitive. Follow the syntax rules for the OPENVM command. For instance, make sure to enclose
file names in quotation marks when using names containing blanks, left parentheses, and other
special characters on the OPENVM commands.

Deleting a File

Using CMS
The command OPENVM ERASE can delete a file. For example,

OPENVM ERASE file1

erases file1 in your current working directory.

Using the Shell
The command rm can delete, or "remove", several files at the same time.

For example:

rm file1 file2 file3

removes all the specified files.

Suppose Alice Smith's directory projectb had several old meeting notices in it that she wanted to
delete: 0607.mtg, 0615.mtg, 0623.mtg, and 0628.mtg. She could remove all four with just a single
command:

rm 06*.mtg

Be careful when using the wildcard asterisk (*) for removing files; you may want to use the -i option,
which prompts you to verify the deletion.

Working with Files

100 z/VM: z/VM 7.2 OpenExtensions User's Guide

Identifying a File by Its Inode Number
In addition to its file name, each file in a file system has a unique identification number called an inode
number. The inode number refers to the physical file, the data stored in a particular location.

A directory entry joins a file name with the inode number that represents the physical file.

Using CMS
To display the inode numbers of the files in a directory, use the OPENVM LISTFILE command with the
(NAMES option. The inode number is the number shown in the Filename column.

Using the Shell
To display the inode numbers of the files in your working directory, just enter:

ls -i

If Alice Smith enters that command for her projecta directory, she sees the following display:

1077 inspproc 1077 isoproc 1492 kgnproc 1500 mcrproc

Because the files inspproc and isoproc are hard-linked, they have the same inode number.

Creating Links
A link is a new path name, or directory entry, for an existing file. The new directory entry can be in the
same directory that holds the file or in a different directory. You can access the file under the old path
name or the new one. After you have a link to a file, any changes you make to the file are evident when it
is accessed under any other name.

You might want to create a link:

• If a file is moved and you want users to be able to access the file under the old name.
• As an alias: You can create a link with a short path name for a file that has a long path name.

A file can have an unlimited number of links to it.

Using CMS
You can use the OPENVM CREATE LINK command to create a hard link or the OPENVM CREATE
SYMLINK command to create a symbolic link.

Using the Shell
You can use the ln command to create a hard link or a symbolic link.

Creating a Hard Link
A hard link is a new name for an existing file. You cannot create a hard link to a directory, and you cannot
create a hard link to a file on a different mounted file system.

All the hard link names for a file are equally important as its original name. They are all real names for the
one original file. To create a hard link to a file, use this command format:

Working with Files

Chapter 12. Working with Files 101

Using CMS
OPENVM CRE LINK old new

Using the Shell
ln old new

Thus, new is the new path name for the existing file old. In Figure 7 on page 102, /u/benson/projecta
is the new path name for the existing file /u/smitha/projecta.

Figure 7. A Hard Link: A New Name for an Existing File

When you create a hard link to a file, the new file name shares the inode number of the original physical
file, as shown in Figure 7 on page 102. Because an inode number represents a physical file in a specific
file system, you cannot make hard links to other mounted file systems.

Creating a Symbolic Link
A symbolic link is another file that contains the path name for the original file—in essence, a reference to
the file. You can create a symbolic link to a file or a directory. Additionally, you can create a symbolic link
across mounted file systems, which you cannot do with a hard link. A symbolic link can refer to a path
name for a file that does not exist.

To create a symbolic link to a file, use this command format:

Using CMS

OPENVM CRE SYM old new

Using the Shell

ln -s old new

Thus new is the name of the new file containing the reference to the file named old. In Figure 8 on page
103, /u/benson/projecta is the name of the new file that contains the reference to /u/smitha/
projecta.

Working with Files

102 z/VM: z/VM 7.2 OpenExtensions User's Guide

Figure 8. A Symbolic Link: A New File

When you create a symbolic link, you create a new physical file with its own inode number, as shown in
Figure 8 on page 103. Because a symbolic link refers to a file by its path name rather than by its inode
number, a symbolic link can refer to files in other mounted file systems.

To understand how a symbolic link that is a component of a path name is handled during path name
resolution, see “Resolving a Symbolic Link in a Path Name” on page 85.

Creating an External Link
An external link is special type of link; it is a a file that contains the name of an object kept outside of the
byte file system. Using an external link, you can associate that object with a POSIX-conforming BFS path
name. If the link is to a CMS record file, you can use the path name to access the file.

Figure 9. An External Link: A New File

To create an external link to a CMS record file, use this command format:

OPENVM CREATE EXTLINK path type file_id

In Figure 9 on page 103, /u/brooks/plib/pgm1 is the name of the new file that contains the reference
to the CMS record file PGM1 MODULE on user BROOKS' A-disk.

Limitations of an External Link:

Working with Files

Chapter 12. Working with Files 103

1. You must use OPENVM CREATE EXTLINK to create it.
2. In order to use the external link, the file pointed to must be on an accessed minidisk or accessed SFS

directory.

Deleting Links

Using CMS
To delete a file with hard links, you must use OPENVM ERASE for every name for the file. The contents of
the file do not disappear until you remove the last link.

To delete symbolic links or external links, use OPENVM ERASE.

Using the Shell
To delete a file with hard links, you must use rm against every name for the file. The contents of the file do
not disappear until you remove the last link.

To delete a file with symbolic links, you use rm against its original name. Any remaining symbolic links
refer to a file that no longer exists. If you know the names of the symbolic link files, you may want to
delete them.

To delete an external link, use rm against the name of the external link.

If you delete a CMS file that is externally linked, the remaining external link refers to a file that no longer
exists.

Renaming or Moving a File or Directory

Using CMS
You can use the OPENVM RENAME command to move or rename files. For example,

OPENVM REN file1 file2

changes file1 in the current directory to have name file2.

Using the Shell
You can use the mv command to move or rename files. For example:

mv file1 file2

moves the contents of file1 to file2 and deletes file1. This is similar to:

cp file1 file2
rm file1

except that, when the files are in the same mountable file system, mv renames the file rather than copying
it. file1 and file2 do not have to be in the same directory.

The mv command can move several files from one place to another.

For example:

mv file1 file2 file3 directoryb

moves all three files to directoryb.

Working with Files

104 z/VM: z/VM 7.2 OpenExtensions User's Guide

Using the -R or -r option, you can move a directory and all its contents (files, subdirectories, and files in
subdirectories) into another directory. For example:

mv -R directorya directoryb

moves the contents of directorya to directory directoryb.

Comparing Files
Consider the following situation: a warehouse has an active file that keeps track of current inventory. As
goods are brought in, appropriate records are added to the file. As orders are shipped out, the records are
deleted. At the end of the day, the warehouse makes a copy of the active file to keep as a permanent
journal.

Using CMS
The CMS Pipelines PIPE command has support for BFS files. The BFS stage can be used to read from BFS
files, intermediate pipelines stages can be used to compare the files, and an output BFS stage can write
the results to a new or existing BFS file. See z/VM: CMS Pipelines User's Guide and Reference for more
information on the PIPE command.

Using the Shell
It would be useful for such a business to be able to compare one day's journal to another day's to see
what has changed. This can be done with the diff shell command:

diff oldfile newfile

compares the two files. The output of diff shows lines that are in one file but not in the other. The lines
in oldfile but not in newfile are displayed with a < in front of them. Lines in newfile but not in oldfile are
displayed with > in front.

For example, say you have a file wmnhist.text with one line in it:

Susan B. Anthony awoke one morning

Then you created a copy of the file with the command:

cp wmnhist.text newhist.text

You use an editor to change the first line in newhist.text to:

Sojourner Truth awoke one morning

You save the file. Now you enter the command:

diff wmnhist.text newhist.text

diff displays:

1c1
< Susan B. Anthony awoke one morning
--->
 Sojourner Truth awoke one morning

The 1c1 at the beginning of the diff output indicates that line 1 in the old file has changed (c) when
compared with line 1 in the new file. diff shows what must be changed in the first file to make it look
like the second file. Remember this sequence when you look at the output of diff. Here the first file,
wmnhist.text, contained the line Susan B. Anthony awoke one morning where the second file,
newhist.text, has Sojourner Truth awoke one morning.

Working with Files

Chapter 12. Working with Files 105

New lines are indicated with an a (add lines), and lines that should be deleted are indicated with a d
(delete). See z/VM: OpenExtensions Commands Reference for more details.

diff helps you determine what has changed in the time that elapsed between saving the two files. It is
useful any time you have two different versions of the same file and want to check the differences.

Sorting File Contents

Using CMS
The CMS Pipelines PIPE has support for BFS files. The BFS stage can be used to read from BFS files,
intermediate pipelines stages can be used to compare the files, and an output BFS stage can write the
results to a new or existing BFS file. See z/VM: CMS Pipelines User's Guide and Reference for more
information on the PIPE command.

Using the Shell
When you create a file of records, you usually do not type the information in any particular order.
However, you may want to keep lists in some useful order after you have entered the information. To sort
the records in a file, use the sort shell command. sort assumes two things:

• Your file contains one record per line. To put it another way, there is a single <newline> character
between a record and the next record.

• The fields in a record are separated by a character that does not itself appear in the fields as data. In
the sample file comics.lst in /etc/samples (shown in Figure 10 on page 107), colons are used.

Working with Files

106 z/VM: z/VM 7.2 OpenExtensions User's Guide

 Detective Comics:572:Mar:1987:$1.75
 Demon:2:Feb:1987:$1.00
 Ex-Mutants:1:Sep:1986:$2.60
 Justice League of America:259:Feb:1987:$1.00
 Boris the Bear:1:Sep:1986:$1.50
 Flaming Carrot:14:Oct:1986:$2.75
 Demon:4:Apr:1987:$1.00
 The Question:1:Jan:1987:$2.10
 Elektra:7:Feb:1987:$2.00
 Howard the Duck:29:Jan:1979:$0.35
 Wonder Woman:3:Apr:1987:$1.00
 Justice League of America:261:Apr:1987:$1.00
 Secret Origins:10:Jan:1987:$1.75
 The Question:2:Mar:1987:$2.10
 Justice League of America:258:Jan:1987:$1.00
 Batman:566:Sep:1986:$1.00
 Legends:3:Jan:1987:$1.00
 Daredevil:234:Sep:1986:$0.95
 Legends:5:Mar:1987:$1.00
 Daredevil:237:Dec:1986:$0.95
 Star Trek:29:Aug:1986:$0.95
 Green Lantern Corps:203:Aug:1986:$0.95
 The Shadow:3:Jul:1986:$2.10
 Green Lantern Corps:204:Sep:1986:$1.00
 Son of Ambush Bug:3:Sep:1986:$1.00
 New Teen Titans:26:Dec:1986:$2.10
 Legends:1:Nov:1986:$1.00
 Detective Comics:568:Nov:1986:$1.00
 Boris the Bear:3:Dec:1986:$2.30
 Cerebus:89:Aug:1986:$2.00
 Legends:4:Feb:1987:$1.00
 Swamp Thing:57:Feb:1987:$1.00
 Wonder Woman:1:Feb:1987:$1.00
 Flaming Carrot:13:Jul:1986:$2.00
 Ex-Mutants:2:Oct:1986:$2.60
 Ex-Mutants:3:Dec:1986:$2.75
 Flaming Carrot:12:May:1986:$2.00
 Midnite Skulker:2:Aug:1986:$2.50
 Strikeforce Morituri:2:Jan:1987:$0.95
 Strikeforce Morituri:1:Dec:1986:$0.95
 Demon:3:Mar:1987:$1.00
 Watchmen:5:Jan:1987:$2.10
 Watchmen:6:Feb:1987:$2.10
 Watchmen:7:Mar:1987:$2.10
 Watchmen:8:Apr:1987:$2.10
 Watchmen:4:Dec:1986:$2.10
 Watchmen:3:Nov:1986:$2.10
 Watchmen:1:Sep:1986:$2.10
 Watchmen:2:Oct:1986:$2.10
 Moonshadow:2:May:1985:$1.75
 Moonshadow:3:Jul:1985:$1.75
 Border Worlds:1:Jul:1986:$2.80
 Daredevil:239:Feb:1987:$0.95
 Dark Knight:4:Oct:1986:$4.50
 Firestorm:55:Jan:1987:$1.00
 Dark Knight:1:Jul:1986:$4.50
 Superman:2:Feb:1987:$1.00
 Legends:2:Dec:1986:$1.00
 Cerebus:87:Jun:1986:$2.00
 Swamp Thing:54:Nov:1986:$1.00
 Son of Ambush Bug:6:Dec:1986:$1.00
 Bozz Chronicles:2:Feb:1986:$1.75
 Bozz Chronicles:3:May:1986:$1.75

Figure 10. A Sample File: comics.lst

To sort a file such as our comic book file, enter:

sort /etc/samples/comics.lst

This command sorts the list and displays it. To save the sorted list in a file, enter:

sort /etc/samples/comics.lst >filename

where filename is the name of the file where you want to store the sorted list. For example:

sort /etc/samples/comics.lst >sorted.lst

sorts the file and stores the result in sorted.lst without changing the input file.

When you use >filename to redirect sorted output into a file, you will usually make the output file name
different from the (unsorted) input file name. If you really want to overwrite a file with its sorted contents,
see the description of the –o flag in sort in z/VM: OpenExtensions Commands Reference.

Working with Files

Chapter 12. Working with Files 107

Using Sorting Keys — An Example
By default, sort sorts according to all the information in the record, in the order given in the record.
Because the name of the comic book is the first thing on the line, the output is sorted according to comic
book name. But suppose that you want to sort according to some different piece of information. For
example, suppose you want to sort by date of publication. You can do this by specifying sorting keys.

A sorting key tells sort to look at specific fields in a record, instead of looking at each record as a whole.
A sorting key also tells what kind of information is stored in a particular field (for example, an ordinary
word, a number, or a month) and how that information should be sorted (in ascending or descending
order).

A sorting key can refer to one or more fields. Fields are specified by number. The first field in a record is
field number 1, the field after the first separator character is field number 2, and so on. In the comic book
list, the month is field number 3, and the year is field number 4.

A single sort command can have several sorting keys. The most important sorting key is given first; less
important sorting keys follow. Let us look at an example that sorts by year and then by month within a
year. Therefore, the first sorting key refers to the year field, and the second to the month field. To specify
a sorting key, use the -k option. This option has the following format:

-k start_field

.char1 opts

, end_field

. end_char2 opts

where start_field, end_field, char1, and char2 are all integers.

• start_field indicates which field in the input record contains the start of the sorting key.
• char1 indicates which character in that field is the first character of the key. Omitting char1 means the

key begins with the first character of the starting field.
• end_field indicates which field in the input record contains the end of the sorting key. If end_field is not
specified then the sorting key extends from the starting position to the end of the record.

• char2 indicates which character in that field is the last character of the key. Omitting char2 means that
the key ends with the last character of the end field.

In our example, the first sorting key (referring to the year) has a start_field value of 4 (because the year is
field 4). char1 does not need to be specified, because the start key begins with the first character of the
year field.

The options, opts, are specified with letters; they identify the type of data in the specified field and tell
how to sort it. Some of the possible options and their meanings are:
d

Indicates that the field contains uppercase, lowercase, or mixed-case letters, letters and digits, or
digits. sort sorts the field in dictionary order, ignoring all other characters.

M
Indicates that the field contains the name of a month. sort looks only at the first three characters of
the name, so January, JAN, and jan are all equal.

n
Indicates that the field contains an integer (positive or negative).

Putting an r after any of these letters tells sort to sort in reverse order (from highest to lowest rather
than lowest to highest). For example, Mr means to sort in the order December, November, October, and
so on.

Working with Files

108 z/VM: z/VM 7.2 OpenExtensions User's Guide

In our example the sorting key based on the year uses n. Thus, the sorting key for the year field (4) in the
file comics.lst is:

-k 4n,4

The second sorting key in the example refers to the month field (3). This key has the form:

-k 3M,3

A sort command that uses sorting keys needs to know which character separates the record fields. You
can specify this with the option -t followed by the separator character. The example uses -t:.
Therefore, the full sort command is:

sort -t: -k4n,4 -k3M,3 comics.lst >sorted.lst

The file to be sorted comes after the various options. This is the order that you must use. The redirection
construct can come anywhere on the line, but it is usually put at the end.

Counting Lines, Words, and Bytes in a File

Using CMS
Use the OPENVM LISTFILE command to find out how many files are in a directory and to find out
attributes for files, such as the number of bytes in the file. CMS Pipelines can also be used to count words,
characters, and lines that pass through a pipeline. See the COUNT stage command in z/VM: CMS Pipelines
User's Guide and Reference.

Using the Shell
The wc command tells you how big a text document is.

wc file file ...

tells you the number of lines, words, and bytes in each file.

If you want to find out how many files are in a directory, enter:

ls | wc -l

This pipes the output of ls through wc. Because ls prints one name per line when its output is being
piped or redirected, the number of lines is the number of files and directories under your working
directory.

Searching Files by Using Pattern Matching

Using CMS
The CMS Pipelines PIPE command has support for BFS files. The BFS stage can be used to read from BFS
files, intermediate pipelines stages can be used to compare the files, and an output BFS stage can write
the results to a new or existing BFS file. See z/VM: CMS Pipelines User's Guide and Reference for more
information on the PIPE command.

Using the Shell
One of the most common record-keeping operations is obtaining a sublist of a list. For example, you might
want to list all the Watchmen comics that appear in the main comics list. The command to do this is grep.

Working with Files

Chapter 12. Working with Files 109

The simplest form of the grep command is:

grep word file

where word is a particular sequence of characters that you want to find and file is a file containing the
records you wish to search. grep lists every line in the file that contains the given word. For example:

grep Watchmen comics.lst

lists every line in comics.lst that contains the word Watchmen. As another example:

grep 1986 comics.lst

lists every line in comics.lst that contains the sequence of characters 1986. Presumably, this lists all
the comics that were published in 1986.

grep Jul:1986 comics.lst

lists all the comics published in July 1986.

If the string of characters you want to search for contains a blank, put single quotation marks
(apostrophes) around the string; for example:

grep 'Dark Knight' comics.lst

You can save a sublist created by grep in a file using redirection:

grep Elektra comics.lst >el.lst

Patterns
So far the examples of grep have displayed the records that contain the desired string anywhere in the
record. If you want to be more specific—say to find records that begin with a certain string of characters
(instead of having that string anywhere in the line)—use grep with patterns instead of strings.

To understand patterns, it helps to think about the special wildcard characters discussed in “Using a
Wildcard Character to Specify File Names” on page 42. Remember that you can use patterns in
commands; for example:

rm *.txt

removes all files in the working directory that have the .txt extension. Instead of specifying a single file
name, this example uses the special character * to represent any file name of the appropriate form.

In the same way, a grep pattern uses special characters so that one pattern can represent many different
strings.

Note: The special characters for grep patterns are not the same as the characters used on command
lines, and the mechanisms involved are also different: however, patterns and wildcard characters are
conceptually similar.

Special characters used in a pattern are called metacharacters. Some metacharacters are:
‸ (caret)

Stands for the beginning of a line. For example, ‸abc is a pattern that represents abc at the beginning
of a line.

$ (dollar sign)
Stands for the end of a line. For example, xyz$ is a pattern that represents xyz at the end of a line.

. (dot or period)
Stands for any (single) character. For example, a.c is a pattern that represents a, followed by any
character, followed by c.

Working with Files

110 z/VM: z/VM 7.2 OpenExtensions User's Guide

* (asterisk)
Indicates zero or more repetitions of part of a pattern. For example, .* indicates zero or more
repetitions of . (period). Because the . stands for any character, .* stands for any number of
characters. For example, ‸a.*z$ is a pattern that represents a at the beginning of a line, z at the end,
and any number of characters in between.

A typical grep command has the form:

grep 'pattern' file

This displays all the records in the file that match the given pattern. For example:

grep '‸Superman' comics.lst

displays all the records that begin with the word Superman

grep '00$' comics.lst

displays all the records that end in 00.

If you want to use the literal meaning of a pattern character instead of its special meaning, put a
backslash (\) in front of the character. For example:

grep '\$1\.00$' comics.lst

finds all the lines that end in $1.00. Without a backslash in front of the $ and . (period), they would have
their special pattern meanings.

Regular Expression
The OpenExtensions shell accepts much more complex patterns than the ones discussed here. The
formal name for a pattern is a regular expression. For further information, see the appendix on regular
expressions in z/VM: OpenExtensions Commands Reference.

Browsing Files
When you display, or "browse," a file, you cannot make any changes to the file while you are viewing it.
You can browse a BFS file using shell commands. With shell commands, you have the choice of browsing
the file in an unformatted or formatted display.

Browsing Files Without Formatting
The OpenExtensions shell has a quick way to find out what is in a given file: the head command and the
tail command.
head filename

Displays the first 10 lines of the given file.
tail filename

Displays the last 10 lines of the given file.

Suppose you have a file that contains records sorted according to date. tail tells you the date of the last
records in the file, giving you an idea of how current the file's contents are. In a sorted comic book list, for
example, tail could show the most recent comics that had been recorded in the file.

To display the contents of an entire file, you can use the cat command.

Browsing Files with Formatting
Formatting is controlling the appearance of the file contents when you browse or print them. You can use
the pr command to browse (or "print to standard output") a formatted file:

pr file

Working with Files

Chapter 12. Working with Files 111

You can specify more than one file name, each separated from the other by a space.

If you do not specify any options, pr formats the file into single-column, 66-line pages, each with a 5-line
header. The first 2 lines are blank. On the 3rd line appear the file's path name, the date of its last
modification, and the current page number. The next 2 lines are blank, and the text of the file begins on
the 6th line. At the end of each page, there are 5 blank lines. There are numerous options for the pr
command; for example, you can specify the page number where the display is to begin, specify output in
columns, or change the width of the displayed page.

Simultaneous Access to a File
It is possible that two or more utilities or programs could be accessing the same file at the same time,
making changes. For example, two people using ed could edit the same file at the same time. In a
program, you can use byte-range locking to avoid this problem. When a file has been accessed by more
than one user simultaneously, the last changes saved overwrite any previous changes. For more
information about locking byte-ranges in a program, see the fcntl() function in the XL C/C++ for z/VM:
Runtime Library Reference.

The CMS XEDIT command obtains a byte-range lock for the entire file when reading it into the XEDIT
session and when writing it to the byte file system.

Backing Up and Restoring Files: The Options
For someone who has SFS administrator authority there are system-level commands available. These
commands are FILEPOOL BACKUP, FILEPOOL FILELOAD, FILEPOOL RESTORE and FILEPOOL
UNLOAD. With these commands you can backup a file space or storage group and you can restore either a
file space, a group or an individual file. For more information, see z/VM: CMS File Pool Planning,
Administration, and Operation.

There are three commands you can use to back up and restore files and directories: pax, cpio, and tar.
The pax command combines the power of the two popular commands cpio and tar.

You use these commands to create an archive file that records the contents of files and directories in a
specific format. A file stored inside an archive file is sometimes called a component file; likewise, a
directory stored inside an archive file is sometimes called a component directory.

If you use absolute path names when creating an archive file, then the files in the archive are restored to
the same position in the hierarchy, regardless of what directory you are working in when you restore the
files. For example, /tmp/c/proga.c is a directory and you archive it with the command:

tar -cvf archive /tmp/c/proga.c

when you restore from archive, the restored files are placed in directory /tmp/c/proga.c.

On the other hand, say you were working in the directory /tmp/data and entered the tar command to
write an archive file without specifying the absolute path name for the directory:

tar -cvf archive

If you happened to be in a different directory when restoring the archive file, say in /tmp/usr, all the
component files would be restored in /tmp/usr.

Code Page Conversion: If you need to convert files from one character set to another, use the pax
command with the -o option. See “Converting Between Code Pages” on page 118.

Working with Files

112 z/VM: z/VM 7.2 OpenExtensions User's Guide

Using cpio to Back Up and Restore Files
cpio reads and writes either a compact binary format header or an ASCII format header. The cpio
command has no limit on the length of a file name. For information on the cpio archive file format, see
Appendix D, “The Format of Archive Files: cpio and tar,” on page 191.

In these examples, /tmp/posix is the working directory.

Backing Up a Complete Directory

Using the Shell

To back up a complete directory, including the subdirectories and their contents, into a file takes two
commands. First a shell command,

find directory_name | cpio -o > archive_file

and then a CMS command:

OPENVM GETBFS archive_file file_id (BFSLINE 1

where archive_file is an absolute path name and file_id is a CMS record file specification.

The find command extracts path names from the specified directory. Its contents are piped to cpio,
which creates an archive file in your working directory. The OPENVM GETBFS command copies the archive
file into the specified CMS record file. For example, to back up the directory /tmp/posix/testpgm into
the file TESTPGM CPIO, enter these two commands:

find /tmp/posix/testpgm | cpio -o > testpgm.cpio

(switch environments and then enter)

OPENVM GETBFS /tmp/posix/testpgm.cpio TESTPGM CPIO (BFSLINE 1

For the cpio command, the -o option writes to an archive file—in this case, to testpgm.cpio.

After you have copied the archive file into an CMS record file, you can delete it from the BFS.

Restoring a Complete Directory from a VM File
The following commands would restore the directory in the previous example:

OPENVM PUTBFS TESTPGM CPIO A /tmp/posix/testpgm.cpio (BFSLINE NONE

(switch environments and then enter)

cpio -iud < testpgm.cpio

The OPENVM PUTBFS command copies the file containing an archive file into the specified directory in the
file system. The cpio command restores the contents of the archive so that they can be accessed in the
file system.

For the cpio command:

• The -i option reads an archive—in this case, from testpgm.cpio.
• The -u option overwrites any existing file or directory.
• The -d option creates any necessary intermediate directories.

Working with a Compressed Archive
To compress the archive file when it is created, enter the shell command:

Working with Files

Chapter 12. Working with Files 113

find /tmp/posix/testpgm | cpio -ocz > testpgm.cpio.z

For the cpio command:

• The -c option creates the header in ASCII format. This is useful when the archive is made up of text
files and is sent using data communication; it is also recommended for transferring data between
different machines.

• The -z option compresses the archive. Adding the .z to the file suffix .cpio is a UNIX convention for
specifying the file is compressed.

To restore the directory from the compressed archive file, enter the shell command:

cpio -icudz < testpgm.cpio.z

As you recall, the -c option indicates the header is in ASCII format.

Viewing the Contents of an Archive
To display a listing of the contents of the archive file, enter the shell command:

cpio -ictzv < testpgm.cpio.z

For the cpio command:

• The -t option lists the contents of the archive on standard output.
• The -v option gives more detailed, or "verbose", information with the list.

If the file is not compressed, you do not use the -z option.

Restoring Selected Files from an Archive
To restore only selected files from the archive file enter the shell command

cpio -icdz file1.c file2.c tmpdir < testpgm.cpio.z

This command restores only file1.c, file2.c, and all files in the directory tmpdir from the archive
testpgm.cpio.z. These files are restored only if they do not exist in your working directory or if the files
in the working directory are older than those in the archive. This is useful for restoring the most up-to-
date files, but not for replacing a file with an older version from the archive. (To copy an archive file to a
target file even if the archive file is older than the target file, use the -u option.)

To restore all files except file1 and file2, use the -f option:

cpio -icdzf file1 file2 < testpgm.cpio.z

Using tar to Back Up and Restore Files
tar reads and writes headers in either the original TAR format from UNIX systems or the USTAR format
defined by the POSIX 1003.1 standard. With the TAR format, the length of the path name you can specify
is 100 characters. With the USTAR format, the length of the path name you can specify is 255 characters.
For information on the TAR archive file formats, see Appendix D, “The Format of Archive Files: cpio and
tar,” on page 191.

During the backup or restore process, tar preserves link information.

If you will be putting the archive file on a tape, the blocksize that was used when writing the file should be
used when reading the file.

In these examples, /tmp/posix is the working directory.

Working with Files

114 z/VM: z/VM 7.2 OpenExtensions User's Guide

Backing Up a Complete Directory into a CMS Record File
To back up a complete directory, including the subdirectories and their contents, into a file, enter two
commands. First the shell command,

tar -cf archive_file directory_name

and then the CMS command:

OPENVM GETBFS archive_file file_id (BFSLINE 1

where archive_file is an absolute path name and file_id is a CMS record file specification.

The tar command creates the specified archive file in your working directory. The OPENVM GETBFS
command copies the archive file into the specified file.

For example, the following commands back up the directory /tmp/posix/testpgm into the file
TESTPGM TAR:

tar -cvf testpgm.tar /tmp/posix/testpgm

(next enter the CMS command)

OPENVM GETBFS /tmp/posix/testpgm.tar TESTPGM TAR (BFSLINE 1

For the tar command:

• The -c option creates an archive.
• The -v option displays each file name as it processes the archive.
• The -f option uses a specified file name for the archive file.

After you have copied the archive file into an CMS record file you can delete it from the BFS.

Restoring a Complete Directory from a CMS Record File
To restore the directory in the previous example, enter one CMS command and one shell command:

OPENVM PUTBFS TESTPGM TAR A /tmp/posix/testpgm.tar (BFSLINE NONE

tar -xvf testpgm.tar

The OPENVM PUTBFS command copies the file containing an archive file into the specified directory in the
file system. The tar command restores the contents of the archive so that they can be accessed in the
file system. For the tar command, the -x option restores files from the archive.

Viewing the Contents of an Archive
To display the names of the files in the archive file, enter the shell command:

tar -tvf testpgm.tar

For the tar command:

• The -t option lists the contents of the archive on standard output.
• The -v option gives more detailed, or "verbose", information on the list.

Restoring Selected Files from an Archive
To restore only selected files from the archive file, enter the shell command:

tar -xvf testpgm.tar file1.c file2.c tmpdir

Working with Files

Chapter 12. Working with Files 115

This command restores only file1.c, file2.c, and all files in the directory tmpdir from the archive
testpgm.tar.

With tar, it is not possible to restore only the files that are newer than the existing files. An alternative is
to use the shell pax command with the -u option:

pax -ruf testpgm.tar

The pax command automatically recognizes that the archive is in TAR format.

Restoring Files Interactively
To restore files interactively, use the -w option on the shell tar command:

tar -xvwf testpgm.tar

With the -w option, the command displays each file name and waits for your response. Enter y to restore
the file. If you enter any other character, tar skips over the file and continues processing.

Appending to an Archive
To back up a directory and append it to the end of an already existing archive, enter the shell command:

tar -rvf testpgm.tar /tmp/posix/testpgm2

tar appends all the files to an existing archive, even if some or all of the files already exist in the archive.
You cannot do this if the archive file is a compressed archive file.

Now, to display the contents of the testpgm.tar archive, enter:

tar -tvf testpgm.tar

Backing Up Files Created over a Certain Number of Days
Suppose you want to back up all files that have been changed during last week. Use the shell command:

find /tmp/posix/testpgm -type f -mtime -7 | tar -cvf testpgm.tar -

• -type f tells find to select only files. This avoids duplicate input to tar.
• The - at the end of the tar command makes it read from standard input, which is the output of the
find command.

Using pax to Back Up and Restore Files
pax can read and write files in CPIO ASCII format, CPIO binary format, TAR format, or USTAR format. It
can read files that were written using tar, cpio, or pax itself. How it handles file name length and
preservation of link information across the backup and restore process depends on the format you select:
If you select CPIO, it behaves like the cpio command; if you select TAR, it behaves like the tar
command.

For information on the CPIO and TAR archive file formats, see Appendix D, “The Format of Archive Files:
cpio and tar,” on page 191.

In these examples, /tmp/posix is the working directory.

Backing Up a Complete Directory into a CMS Record File
To back up a complete directory, including the subdirectories and their contents, into a file, enter one
shell command and one CMS command:

pax -wf archive_file directory_name

Working with Files

116 z/VM: z/VM 7.2 OpenExtensions User's Guide

OPENVM GETBFS archive_file file_id (BFSLINE 1

where directory_name is the name of the directory you want to archive, archive_file is an absolute path
name and file_id is a CMS record file specification. The pax command creates an archive file with the
specified name in the current working directory. The OPENVM GETBFS command copies the archive file
into the specified CMS record file.

For example, these two commands back up directory /tmp/posix/testpgm into file TESTPGM PAX:

pax -wf testpgm.pax /tmp/posix/testpgm

(next enter the CMS command)

OPENVM GETBFS /tmp/posix/testpgm.pax TESTPGM PAX (BFSLINE 1

For the pax command:

• The -w option writes to the archive file.
• The -f option lets you specify the name of the archive file.

After you have copied the archive file into an CMS record file you can delete it from the BFS.

Note: To avoid accidentally including the archive file you must do one of these:

• Explicitly specify the directories you want included (as in the above example)
• Write the archive file to a different directory than the one you are archiving. This example archives the

contents of the current directory and writes the archive in another directory, /tmp:

pax -w . > /tmp/pax.file

Restoring a Complete Directory from a CMS Record File
To restore the directory in the previous example, enter one shell command and then one CMS command:

OPENVM PUTBFS TESTPGM PAX A /tmp/posix/testpgm.pax (BFSLINE NONE

pax -rf testpgm.pax

The OPENVM PUTBFS command copies the file containing an archive file into the specified directory in the
file system. The pax command restores the contents of the archive so that they can be accessed in the
file system.

For the pax command, the -r option reads from the file specified with the -f option.

Working with a Compressed Archive
To compress the archive file when it is created, use -z option with the shell pax command:

pax -wzf testpgm.pax.z /tmp/posix/testpgm

Adding the .z to the file suffix .pax is a UNIX convention that indicates the file is compressed.

To restore the directory from the compressed archive:

pax -rzf testpgm.pax.z

Viewing the Contents of an Archive
To view the contents of archive, use the -f option with the shell pax command:

pax -zf testpgm.pax.z

If the file is not compressed, you do not need the -z option.

Working with Files

Chapter 12. Working with Files 117

Specifying a Format for Backup
Use the -x option to specify format with the shell pax command. To create an archive file with a header in
CPIO binary format:

pax -wzf testpgm.pax.z -x cpiob /tmp/posix/testpgm

To create an archive in USTAR format:

pax -wzf testpgm.pax.z -x ustar /tmp/posix/testpgm

Restoring Selected Files from an Archive
To restore a file from an archive file that is not compressed, you do not have to specify the file's format.
However, when restoring a file from a compressed archive file, use the -x option to indicate the format of
the archive file.

To restore only selected files from a compressed archive file, use this shell command:

pax -ruzf testpgm.pax.z -x cpiob file1.c file2.c tmpdir

This command restores only file1.c, file2.c, and all files in the directory tmpdir from the archive
testpgm.pax.z. Because the -u option is specified, these files are restored only if they do not exist in
the working directory or if the files in the working directory are older than those in the archive.

Restoring All But Selected Files from Backup
To restore all files except file1 and file2 use the following shell command:

pax -wczf testpgm.pax.z -x cpiob file1 file2

The -c option selects those files that do not match the pattern given on the command line. In this
example, the pattern is the two file names.

Converting Between Code Pages
If you need to convert an archive file from one character set to another, use the -o option with the shell
pax command:

pax -wf testpgm.pax -o from=IBM-1047,to=ISO8859-1 /tmp/posix/testpgm

This command backs up the /tmp/posix/testpgm directory, which is in the character set IBM-1047,
into an archive file that is targeted to an ASCII character set (ISO8859-1).

This option is very useful for transferring text data between systems that use different code pages.

To restore from the archive file created in the previous example, enter the shell command:

pax -rf testpgm.pax

You do not have to specify -o option for restoring when the conversion was done at the time of backup.

A code page is also known as a code set. See the z/OS: XL C/C++ Programming Guide (www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r4sc147315/$file/cbcpx01_v2r4.pdf) for more
information about the code sets supported for this command.

Restoring an ASCII Archive File That Has Component Archive Files
Most archive files you receive are in ASCII format if they do not come from an OpenExtensions system.
Therefore, you will need to convert the data from ASCII to EBCDIC when you restore the archive file.

This procedure becomes more complex if the archive file has component files that are archive files
themselves. For example, let's say you have received an archive file for product A. The file is called

Working with Files

118 z/VM: z/VM 7.2 OpenExtensions User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc147315/$file/cbcpx01_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc147315/$file/cbcpx01_v2r4.pdf

multfil.pax and it has one embedded archive file, pgma.pax, along with "usual" component
directories and files.

Assume that the main archive file is in the file system and is named /usr/proda/multfil.pax. Here is
the sequence of steps:

1. Change to the directory /usr/proda and restore the main archive file, using the convert option; for
example:

cd /usr/proda
pax -rf multfil.pax -o from=ISO8859-1,to=IBM-1047

where multfil.pax is the archive file name. No pattern is specified, because you want to restore all
the members.

The component files are restored into a directory tree below your working directory (/usr/proda).
The embedded archive file pgma.pax is also converted; as a result, it is unusable. You now need to
restore it separately from the file multfil.pax.

2. Restore the component archive file from the original archive file without using the convert option. For
example, you would restore pgma.pax in your working directory /usr/proda with this command:

pax -rf multfil.pax pgma.pax

This extracts pgma.pax from the archive file multfil.pax and overlays the garbled version from
step 2. However, pgma.pax is still an archive file.

Note: If pgma.pax is an archived directory that is a subdirectory of the directory that multfil.pax
has archived, include that subdirectory name in the path name when you restore it; for example:

pax -rf multfil.pax pgm/pgma.pax

3. Restore the component archive file, /usr/proda/pgma.pax, using the convert option. In our
example, you can now convert the archive file pgma.pax:

cd /etc/proda
pax -rf /usr/proda/pgma.pax -o from=ISO8859-1,to=IBM-1047

This becomes a separate directory tree below your working directory /etc/proda.

If there are multiple component archive files in an archive file, you may want to write a shell script to
restore them.

Working with Files

Chapter 12. Working with Files 119

Working with Files

120 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 13. Handling Security for Your Files

Each user has user ID (UID) and group ID (GID) numbers that are set when the user is defined to the
system. A user always belongs to at least one group—for example, a department—and each group that
uses the system is assigned a GID. The system uses the UID and GID to identify the files a user creates
and processes a user runs. When you create a directory, the directory is automatically associated with
your UID, and its GID is set to the owning GID for the parent directory (the directory it is in). When you
create a file, the file is automatically associated with your UID, and its GID is set to the owning GID for the
parent directory.

There are three classes of users whose access you can control:

• Owner (the owner of the file or directory, whose UID matches the UID for the file)
• Group (a member of any group whose GID matches the GID for the file)
• Other (anyone else)

You control access to a file and directory that you own through its permission bits. (Taken together, the
permission bits are often called the mode.) There are three types of permissions that you can grant to
each class of user. The meanings of the three permissions differ somewhat for a file and a directory:

Permission Notation Meaning

read r Directory: Permission to read, but not search, contents.

File: Permission to read or print contents. To run a shell
script, you need both read and execute (discussed below)
permission.

write w Directory: Permission to change the directory, adding or
deleting members.

File: Permission to change the file, adding or deleting data

execute or process x Directory: Permission to search a directory. Usually r and x
are used together.

File: Permission to run a file—that is, enter it as a command.
Typically this permission is used for shell scripts and for files
containing executable programs. (To run a shell script, you
need read and execute permission.)

Default Permissions Set by the System
You can override the defaults by setting the system mask using OPENVM SET MASK.

The following table shows the default permissions set by the system:

Task Using Default Permissions

Create a directory mkdir shell
command

owner=rwx
group=r-x
other=r-x

Create a directory OPENVM CREATE
DIRECTORY

owner=rwx
group=r-x
other=r-x

Security

© Copyright IBM Corp. 1993, 2020 121

Task Using Default Permissions

Create a file XEDIT command owner=rw-
group=r--
other=r--

Create a file ed editor owner=rw-
group=r--
other=r--

Create a file Redirection (>) owner=rw-
group=r--
other=r--

Create a file cp command Sets the output file permissions to the input file permissions.

Create a file OPENVM GETBFS
command

If any execute permissions are on in the source file:

owner=rwx
group=r-x
other=r-x

If no execute permissions are on in the source file:

owner=rw-
group=r--
other=r--

Create a file OPENVM PUTBFS If the source file is a BFS file and any of its execute
permissions are on, or if the source file is a CMS record file in
MODULE format:

• owner=rwx
• group=r-x
• other=r-x

Otherwise, default permissions are:

owner=rw-
group=r--
other=r--

Changing Permissions for Files and Directories

Using CMS
You can use the OPENVM PERMIT command to change permissions for your files and directories. To
change permissions, you must be the owner or a superuser.

For example, to add public read and write permission to the file fileaa, enter:

OPENVM PERMIT fileaa --- --- rw- (ADD

To remove public write permission, enter:

OPENVM PERMIT fileaa --- --- -w- (REMOVE

Security

122 z/VM: z/VM 7.2 OpenExtensions User's Guide

To replace the permission bits with an entirely new set of permission bits, use the (REPLACE option of
OPENVM PERMIT, for example:

OPENVM PERMIT fileaa rw- rw- rw (REPLACE

Note that (REPLACE is the default.

See z/VM: OpenExtensions Commands Reference for more information.

Using the Shell
You can use the chmod command to set or change permissions for your files and directories. To change
permissions, you must be the owner. If you are uncertain about ownership, use the ls -l command and
see if your CMS user ID is in the third field.

You can specify the chmod command like this:

chmod mode pathname

You can specify the mode in symbolic form or as an octal value. For more information on the chmod
command, see z/VM: OpenExtensions Commands Reference.

Using a Symbolic Mode to Specify Permissions
A symbolic mode has the form:

who

op permission

The who value is optional; it can be any combination of the following:
u

Sets owner (user) permissions.
g

Sets group permissions.
o

Sets other permissions.
a

Sets all permissions; this is the default.

The op part of a symbolic mode is an operator that tells chmod to turn the permissions on or off. The
possible values are:
+

Turns on a permission.
–

Turns off a permission.
=

Turns on the specified permissions and turns off all others.

The permission part of a symbolic mode is any combination of the following:
r

Read permission. If this is off, you cannot read the file.
s

This stands for set-user-ID-on-execution or set-group-ID-on-execution permission. See “Temporarily
Changing the User ID or Group ID during Execution” on page 128 for more information.

Security

Chapter 13. Handling Security for Your Files 123

t
This sets the sticky bit on. The sticky bit is supported for compatibility only. OpenExtensions takes no
special action in support of this bit.

w
Write permission. If this is off, you cannot write to the file.

x
Execute permission. If this is off, you cannot process the file.

X
Execute/search permission if the specified object is a directory or if the current mode bits have at
least one execute/search bit set. If the object is not a directory and if none of the execute/search bits
are set in the current mode then X is ignored.

For example, to turn on read, write, and execute permissions, and turn off the set-user-ID and sticky bit
attributes for a file, enter the command:

chmod a=rwx file

You can specify multiple symbolic modes if you separate them with commas.

Using Octal Numbers to Specify Permissions with the Shell
Typically, octal permissions are specified with three or four numbers, in these positions:

1234

Each position indicates a different type of access:

• In position 1 are the bits that set permission for set-user-ID on access, set-group-ID on access, or the
sticky bit. Specifying this position is optional.

• In position 2 are the bits that set permissions for the owner of the file. Specifying this position is
required.

• In position 3 are the bits that set permissions for the group that the owner belongs to. Specifying this
position is required.

• In position 4 are the bits that set permissions for others. Specifying this position is required.

Position 1
Specifying the bits in position 1 is optional. For position 1, you can specify these octal numbers:
0

Off
1

Sticky bit on.
2

Set-group-ID-on execution
3

Set-group-ID-on execution and set the sticky bit on.
4

Set-user-ID on execution
5

Set-user-ID on execution and set the sticky bit on.
6

Set-user-ID and set-group-ID on execution
7

Set-user-ID and set-group-ID on execution and set the sticky bit on.

Security

124 z/VM: z/VM 7.2 OpenExtensions User's Guide

Positions 2, 3, and 4
Specifying these bits is required. For each type of access—owner, group, and other—there is a
corresponding octal number:
0

No access (---)
1

Execute-only access (--x)
2

Write-only access (-w-)
3

Write and process access (-wx)
4

Read-only access (r--)
5

Read and execute access (r-x)
6

Read and write access (rw-)
7

Read, write, and execute access (rwx)

To specify permissions for a file or directory, you use at least a three-digit octal number, omitting the digit
in the first position. When you specify three digits instead of four, the first digit describes owner
permissions, the second digit describes group permissions, and the third digit describes permissions for
all others.

If you are not specifying the first octal digit, you can specify 3 digits instead of 4. When the first digit is not
specified, some typical 3-digit permissions are specified in octal this way:

Table 3. Three-Digit Permissions Specified in Octal

Octal Number Meaning

666 owner (rw-)
group (rw-)
other (rw-)

700 owner (rwx)
group (---)
other (---)

755 owner (rwx)
group (r-x)
other (r-x)

777 owner (rwx)
group (rwx)
other (rwx)

Displaying File and Directory Permissions

Security

Chapter 13. Handling Security for Your Files 125

Using CMS
Use the OPENVM LISTFILE command with the (OWNERS option to display permissions for files and
directories.

OPENVM LIST / (OWNERS SUBD
Directory = '/'
User ID Group Name Permissions Type Path name component
bfs1 CMSUSRS rwx rwx rwx D 'International_data'
bfs1 CMSUSRS rwx rwx rwx D 'US_cities_and_towns'
bfs1 CMSUSRS rw- rw- rw- F 'US_cities_and_towns/Anaheim_File'
bfs1 CMSUSRS rw- rw- rw- F 'US_cities_and_towns/Boston_File'
bfs1 CMSUSRS rw- rw- rw- F 'US_cities_and_towns/Detroit_File'
bfs1 CMSUSRS rw- rw- rw- F 'US_cities_and_towns/Endicott_File'
Ready;

Using the Shell
To display the permissions for the files and directories in your working directory, use ls -W. (The ls -l
command displays all the access permissions but does not display the audit permissions.) The display
format is:

drwxr-x--- fff--- 2 nettle groupz 96 Jun 15 10:34 statrp
-rwx------ fff--- 1 nettle groupz 107 Jul 10 07:45 feb95
-rwx------ fff--- 1 nettle groupz 80 Aug 10 13:15 aprl95
-rwx------ fff--- 1 nettle groupz 150 Jan 13 10:45 jun94
drwxr-xr-x fff--- 2 nettle groupz 96 Jun 17 09:05 dbappl
-rwxr-x--- fff--- 1 nettle groupz 150 Jun 17 10:15 txtn1

• First field: A string of 10 characters. The first character indicates the file type. The next 9 characters
are the permissions. For example:

-rwxr-xr-x

View them this way:

- rwx r-x r-x

– The first character indicates whether this is a file or directory.

- for a regular file (binary or text)
c for a character special file
d for a directory
E for an external link
l for a symbolic link
p for a named pipe (FIFO special file)
s for a socket file

In the example, - indicates a regular file.
– The first set of 3 characters show the owner's permissions. In this example, the owner has read,

write, and execute permission (rwx).
– The second set of 3 characters show the group permissions. In this example, the group to which the

user belongs has read and execute permission (r-x).
– The third set of 3 characters show the "other" permissions. In this example, any other user can read

the file and execute it (r-x). If the sticky bit is on, you see a T in the final field (--T).
• Second field: The audit settings. These 6 characters are actually two groups of 3 characters. The first

group of 3 describes the audit settings requested by a user through the BPX1CHA callable service; the
second group describes audit settings requested by a security auditor. The characters can be:

s to audit successful access attempts
f to audit failed access attempts
a to audit all accesses

Security

126 z/VM: z/VM 7.2 OpenExtensions User's Guide

- for no audit

In the example, fff---,

fff means failed read, write, and execute or search attempts to access the file are audited by the
user.
--- means read, write, and execute or search attempts to access the file are not audited by the
security auditor.

• Third field: The number of links to the file or directory.
• Fourth field: The owner's login name (CMS user ID).
• Fifth field: The name of the group associated with the file or directory.
• Sixth field: The size of the file, expressed in bytes.
• Seventh field: A date and time. For a file, this is the time the file was last changed; for a directory, it is

the last time a file was created or deleted in the directory.
• Eighth field: The name of the file or directory. If the file is a symbolic link, that also is indicated. See the

additional information for the file name lnk in this example:

lrwxrwxrwx 1 nettle sys1 8 May 21 15:30 lnk -> /tmp/ehk
$

Setting the File Mode Creation Mask
When a file is created, it is assigned initial access permissions. If you want to control the permissions that
a program can set when it creates a file or directory, you can set a file mode creation mask. When you set
the mask, you are setting limits on allowable permissions: you are implicitly specifying which permissions
are not to be set, even though the calling program may attempt to set those permissions. When a file or
directory is created, the permissions set by the program are adjusted by the file mode creation mask
value: the final permissions set are the program's permissions minus what the file mode creation mask
restricts.

Using CMS
Set the file mode creation mask using OPENVM SET MASK. This sets the mask for the current process and
for any new processes created until your CMS virtual machine is IPLed or another OPENVM SET MASK
command is issued. You can put this command into your PROFILE EXEC file so that it is always in effect.

For example, to deny write access to users other than the file owner you may specify:

OPENVM SET MASK rwr R-X R-X

A subsequently created file would have these file permissions initially:

 Owner Group Public
 rwx r-x r-x

Using the Shell
You can set the file mode creation mask for one shell session by entering the umask command
interactively, or you can make the umask command part of your login.

To use the umask command for a single session, enter:

umask mode

Security

Chapter 13. Handling Security for Your Files 127

and specify the mode in either of the formats used by chmod: symbolic (rwx) or octal values. The
symbolic form expresses what can be set (what is allowed) while octal values express what cannot be set
(what is disallowed). For example, both of these commands set the same umask:

umask a=rx
umask 222

To display the mask,

• If you enter just umask, you see the mode displayed in octal values, indicating what cannot be set.
• If you enter umask -S, you see the mode displayed in symbolic form, indicating what can be set.

The OpenExtensions shell's initial setting of the mask is 022, which means that read, write, and execute
permission is set on for the owner, and read and execute permission is set on for group and other.

To make your umask setting take effect each time you start the shell, put the umask command in
$HOME/.profile.

Changing the Owner ID or Group ID Associated with a File
You might need to change the UID or GID for a file. To protect the data in a file from unauthorized users,
the system controls who can change the file access:

• The superuser can change the owner (UID) of a file
• The superuser or the file owner can change the group (GID) for a file. The file owner must have the new

group as his group or one of his supplementary groups.

Using CMS
Use the OPENVM OWNER command to change both the owner (UID) and the group (GID) for a file. To
change just the group for filea, enter:

OPENVM OWNER filea newgroup

To change the owner and the group, enter:

OPENVM OWNER filea newgroup newowner

To change just the owner, enter:

OPENVM OWNER filea * newowner

In these examples, newowner and newgroup are the VM user ID of the user who's to be the new owner of
the file and the POSIX group name with which the file is to be associated.

Using the Shell
To change the owner (UID) of a file, enter a chown shell command. To change the group (GID) of a file,
enter a chgrp command.

Superuser tasks are discussed in z/VM: OpenExtensions Commands Reference.

Temporarily Changing the User ID or Group ID during Execution
An executable file, which is a file containing a shell script or a program, can have an additional attribute.
This permission setting allows a program temporary access to files that are not normally accessible to
other users.

Security

128 z/VM: z/VM 7.2 OpenExtensions User's Guide

Using CMS
When you use the OPENVM LISTFILE command with the (OWNER option, you see three columns
indicating the permissions for owner, group, and public as discussed earlier. For the owner or group, the
execute column (x) may have an 's', indicating that the UID or GID will be set on execution of this file. An
's' implies execute authority.

Using the Shell
When you enter ls -l, an s or S can appear in the execute permission position; this permission bit sets
the effective user ID or group ID of the user process executing a program to that of the file whenever the
file is run.
s

In the owner permissions section, this indicates that both the set-user-ID (S_ISUID) bit is set and
execute (search) permission is set.

In the group permissions section, this indicates that both the set-group-ID (S_ISGID) bit is set and
execute (search) permission is set.

S
In the owner permissions section, this indicates the set-user-ID (S_ISUID) bit is set, but the execute
(search) bit is not.

In the group permissions section, this indicates the set-group-ID (S_ISGID) bit is set, but the execute
(search) bit is not.

To give a file the set-user-ID permission, use the chmod command. For example,

chmod u+s cmd1

A good example of this behavior is the mailx utility. A user sending mail to another user on the same
system is actually appending the mail to the recipient's mail file, even though the sender does not have
the appropriate permissions to do this—the mail program does.

Security

Chapter 13. Handling Security for Your Files 129

Security

130 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 14. Editing Files

You have a choice of three editors for creating and changing files:

• XEDIT, a full-screen editor that you call from CMS or the shell
• The ed editor, a line editor that you can call from the shell or CMS
• The sed stream editor, a noninteractive editor. It is intended for systematic editing; you call the editor

with a file of editing commands and a target data file and it produces an edited target file, with no user
interaction.

Using XEDIT to Edit a BFS File

Using XEDIT
XEDIT provides a full-screen editor you can use to create and edit BFS files.

Using XEDIT, you can edit only regular files (not special files). You need read permission for the file and
search permission for any intermediate directories. You need write permission to save changes to the file.

When you create a new file, you must have the appropriate permissions to add a new file to the parent
directory. When XEDIT creates a file, it attempts to set the permission bits to rw- r-- r--; if you have a
umask in effect, those bits will be downgraded accordingly. See “Setting the File Mode Creation Mask” on
page 127 for more information.

XEDIT allows many editing sessions at a time. It reads the entire file when the edit session begins. At the
end of the session, it replaces the original file with the edited file.

During an XEDIT session, you can use these types of commands:

Types Functions

Scrolling commands You can use commands to scroll the data up, down, left, or right.

Line commands You perform line editing by entering a line command directly on the line
number of the affected line. For example, to delete a line, you enter D on the
line number; to repeat a line, you enter " on the line number. You can enter
line commands for several lines at the same time.

XEDIT subcommands To perform editing tasks, you enter XEDIT subcommands. For example, you
can use the LOCATE subcommand to scan data for a specific character string.
If you entered:

LOCATE /printf(

on the command line, the editor locates the next occurrence of printf(.
Likewise, you can enter the CHANGE subcommand to make global changes
within a file. For example:

CHANGE /CRTL/C-RTL/ *

changes all instances of CRTL to C-RTL.

You can use other XEDIT subcommands, such as GET, PUT, PUTD, FILE, and
SAVE, to work with other files from within your XEDIT session.

CMS commands While you are editing one file, you can use CMS commands to work with other
files, or to perform other tasks.

Editing Files

© Copyright IBM Corp. 1993, 2020 131

To end an edit session:

• Saving all changes, enter the FILE subcommand.
• Without saving any changes, enter the QQUIT subcommand.

When you end the edit session, you go back to where you were when you began it: on the entry panel, to
the CMS Ready; prompt, or to the shell prompt.

All You Ever Wanted to Know about XEDIT

The discussion in this chapter is an introduction to XEDIT. For detailed information about XEDIT,
including the subcommands just mentioned, use the online HELP facility or see z/VM: XEDIT Commands
and Macros Reference.

Support for Doublebyte Characters
The XEDIT command works with doublebyte characters. An XEDIT subcommand, SET ETMODE (for
extended mode) controls whether XEDIT recognizes DBCS strings. The initial setting is based on whether
the terminal can display double-byte characters.

Code Page Conversion
When you edit a BFS file using XEDIT, two code pages may be at work and there is no conversion between
them. If you have not customized your keyboard, any left or right square bracket you type will be stored
as characters that will not be properly interpreted by the C/C++ compiler, shell, or utilities. For a
discussion of code page conversion, see “Understanding Code Page Conversion” on page 19.

Typing Tabs using XEDIT
Writing makefiles for the make utility requires the use of a <tab> character. awk programs can also use
tabs.

If you are using an OpenExtensions editor (such as ed), you can type a tab character as an <EscChar-I>
sequence. When you press ENTER, a blank space is displayed.

If you are using XEDIT, you cannot type a tab character (XEDIT handles only displayable characters).
Instead, you can:

1. Select a substitute for a tab character, for example, the character @.
2. Whenever you want a tab to appear, type an @ instead of a tab character.
3. When you have finished editing the file, on the command line enter:

top
alter @ 05 * *

This converts all @ in each line to the hex character 05, which is a tab.

The foregoing is just one of several methods you can use to edit hex data.

If you use XEDIT to edit an existing file that has tabs in it:

1. If you make no changes to a record, the tabs in that record are preserved.
2. If you make a change on a record that contains TAB characters, then XEDIT expands the tabs to

spaces according to the settings established by XEDIT's SET TABS subcommand.

Preserving Trailing Blanks in Files
XEDIT removes trailing blanks from lines in files unless the BFSLINE option or SET BFSLINE
subcommand is used. If this is undesirable, use the sed stream editor instead.

Editing Files

132 z/VM: z/VM 7.2 OpenExtensions User's Guide

Working with Lowercase or Mixed-Case Files
You control whether to convert lowercase characters to uppercase when you type in a file. The initial
setting is based on the file type of the file being edited. Because BFS files do not have a file type the initial
setting will be in mixed-case. To change characters entered in lowercase to uppercase, enter the XEDIT
subcommand SET CASE UPPERCASE, or simply CASE U. After entering the command, all characters will
be uppercase. Changing the setting after entering data, however, will not affect characters already
entered.

Accessing a File to Edit
To use XEDIT to edit a regular file enter XEDIT pathname (NAMETYPE BFS. The path name specified may
be a relative, absolute, or fully-qualified path name. It may also be mixed-case. If the path name contains
characters such as blanks, parentheses, or X'FF', it must be enclosed in quotation marks.

Since XEDIT is used to edit both CMS record file (which use a naming convention of filename filetype
filemode) and BFS files (which use pathnames), you must tell XEDIT which naming convention you are
using. Do this using the NAMETYPE CMS or NAMETYPE BFS option on the XEDIT command.

Another XEDIT option, BFSLINE, lets you tell the editor how to translate the byte stream into lines or
records. You can select to separate it into records of a fixed length using BFSLINE lrecl or you can
separate them into records using one or two line end characters. You can select X'15' for a line end
character by using the BFSLINE NL option, or you can specify the line end character(s) using a character
string or hexadecimal string. The BFSLINE NL option is the default if BFSLINE is not specified.

You can also use a profile to set the NAMETYPE, BFSLINE, or other XEDIT options. An XEDIT profile is a
CMS record file. See z/VM: XEDIT Commands and Macros Reference for more information.

Working with Other Files While Editing a File
While editing a BFS file, you can type XEDIT subcommands or other CMS commands on the command
line. Descriptions of some of those commands follow:

Table 4. Sample XEDIT Subcommands

Subcommand Function

GET Copies another BFS file, CMS record file, or part of a CMS record file into the file you
are editing.

PUT Appends all or part of the file you are editing to a BFS or CMS record file. (If the file
being written to does not exist, it is created.)

PUTD (PUT
Delete)

Appends all or part of the file you are editing to a BFS or CMS record file, and removes
the lines from the file you are editing. (If the file being written to does not exist, it is
created.)

FILE Writes the file you are editing out into the same or a different BFS or CMS record file,
and ends the editing session.

SAVE Writes the file you are editing out into the same or a different BFS or CMS record file,
and continues the editing session.

XEDIT Edits another BFS or CMS record file during your current edit session.

Using Edit Macros

If you use XEDIT macros that depend on file attributes, you may need to tailor the macros to work with
the assumptions made about a BFS file. If you use the BFSLINE lrecl option, the file looks like a fixed
record format CMS record file while in the XEDIT session. If you use any other BFSLINE option, the file
looks like a variable record format file while in the XEDIT session. For more information, see z/VM: XEDIT
Commands and Macros Reference.

Editing Files

Chapter 14. Editing Files 133

Copying into a File

Use the GET subcommand to copy an entire BFS file into the file you are editing. You can also use it to
copy all or part of a CMS record file into the file you are editing.

1. Use a slash (/) in the prefix area of the line you want the new data to follow. This makes that line the
current line.

2. Specify GET pathname or GET fn ft fm on the command line. (Note that you may need to issue SET
NAMETYPE BFS or SET NAMETYPE CMS first.)

3. Press ENTER.

Moving Data into a File

Use the PUT or PUTD subcommand to put all or part of the file you are editing into a BFS file or a CMS
record file. If you use PUTD, the lines are removed from the file you are editing.

1. Use a slash (/) in the prefix area of the first line you want written. This makes that line the current line.
2. Specify PUT nn pathname or PUT nn fn ft fm on the command line. nn tells XEDIT how many lines you

want to write. (Note that you may need to issue SET NAMETYPE BFS or SET NAMETYPE CMS first.)
3. Press ENTER.

Replacing a File or Creating a File with Data from a File

Use the FILE or SAVE subcommand to replace the contents of a file with the file you are editing.

1. On the command line type one of the following:

• Type FILE to save the file under the current name.
• Type FILE pathname to file the name to a BFS file. (Note that NAMETYPE must be set to BFS.)
• Type FILE fn ft fm. (Note that NAMETYPE must be set to CMS.)

2. Press ENTER.

You may perform the same function with the SAVE subcommand. However, in that case, you do not exit
from your XEDIT session.

Editing Another File During an Edit Session

Use the XEDIT subcommand during your current editing session to edit another BFS or CMS record file. If
the file does not exist, it is created.

1. Type XEDIT pathname (NAMETYPE BFS or XEDIT fn ft fm on the command line and press ENTER.
(Note that unlike other subcommands that use path names, the XEDIT subcommand does not use the
NAMETYPE setting in effect for the current session. In order to change from the default NAMETYPE
CMS, you must specify NAMETYPE BFS on the XEDIT subcommand, or in your XEDIT PROFILE.)

2. Press ENTER.

Edit Recovery
You can determine the level of recovery for your XEDIT session using the SET AUTOSAVE command.
When the automatic save function is in effect, the editor automatically issues a SAVE subcommand each
time the specified number of alterations is made. The AUTOSAVE file is written to a CMS minidisk or
accessed SFS directory. See the SET AUTOSAVE command in z/VM: XEDIT Commands and Macros
Reference for more information about how to set the level of recovery and how to perform the recovery.

Using the ed Editor

Editing Files

134 z/VM: z/VM 7.2 OpenExtensions User's Guide

Using the Shell
ed is a line editing program available in the OpenExtensions shell. When you use ed to edit a file, the file
is copied into the edit buffer, a temporary storage area. You use various subcommands to edit the text in
the buffer. When you end your edit session, the contents of the buffer are written to the file system,
overwriting the previous contents of the file.

With ed, you work with one line in the buffer at a time. In this discussion, that position in the buffer is
called the current working line.

For more details about ed, see z/VM: OpenExtensions Commands Reference.

Creating and Saving a Text File
1. To begin editing a new file, enter:

ed filename

where filename is the name of a new file.
2. After you see the ?filename message, enter:

a

This indicates you want to append lines.
3. Type your text. At the end of each line, press ENTER. You can then enter more text.
4. When you are finished entering text, enter:

.

(a period) at the start of a new line.
5. To write the contents of the edit buffer to the file filename, enter:

w

After writing to the file, the shell displays the number of characters copied (for example, 746). This
number includes blanks and newline characters appended to each line of text, which you cannot see
on the screen.

If you want to write to a file different from the original filename, specify a different file name when you
enter the w subcommand; for example:

w diffname

Entering the w subcommand does not change the contents of the buffer.
6. To exit the ed program, enter:

q

This deletes the contents of the buffer.

Editing an Existing File
To begin editing an existing file, enter:

ed filename

Your current working line is the last line in the file. If you want to change your position in the file before
you begin editing, see “Identifying Line Numbers and Changing Your Position in the Buffer” on page 136.

Editing Files

Chapter 14. Editing Files 135

If you are already using ed, have finished editing one file and saved it with the w subcommand, and you
now want to edit another file, enter:

e filename

This erases the previous contents of the buffer and loads in the new file.

Identifying Line Numbers and Changing Your Position in the Buffer
To find out how many lines there are in a file, enter:

$=

To identify the line number of your current working line, enter:

.=

You can make a different line in the file your current working line and then identify its number.

To move the current working line forward a line at a time, press ENTER. The text of the line is displayed.

To move the current working line backward a line at a time, enter:

–

(hyphen). The text of the line is displayed.

Changing Position Using Numbers

To change the current working line to a different line in the file, enter:

n

where n is the number of the line. The text of the line is displayed.

To move the current working line n lines forward, enter:

.+n

To move the current working line n lines backward, enter:

.–n

Changing Position Using a Search String (Regular Expression)

If you do not know the number or position of the line you want to make your current working line, you can
locate a string (or regular expression) in the line. To search forward for one or more words or a string of
characters, enter:

/regexp/

where regexp is one or more words or a string of characters. The line containing the search string is
displayed and it is now your current working line.

To search backward for one or more words or a string of characters, enter:

?regexp?

where regexp is one or more words or a string of characters. The line containing the search string is
displayed and it is now your current working line.

Appending One File to Another
If you want to append a file at the end of the file you are working on in the buffer, enter:

Editing Files

136 z/VM: z/VM 7.2 OpenExtensions User's Guide

r filename

Or, if you want to read a file in after a specific line in the buffer, enter:

nr filename

where n is the number of the line in the file.

To display the contents of a file in the edit buffer, enter:

,p,

On your screen, each line of the file is displayed, for example:

,p,
Take time to work, work is the price of success.
Take time to think, thoughts are the source of power.

After you know the line numbers, you could insert the file addlines after the line Take time to
think.... Thus, you would enter:

2r addlines

Displaying the Current Line in the Edit Buffer
When you enter subcommands you identify the current working line with the symbol . (dot).

To display the current working line, enter:

p

To display the line number of the current working line, enter:

.=

Changing a Character String
For changing text or correcting spelling errors, use the s (substitute) subcommand. When you enter the
subcommand, the line you are changing becomes your current working line. To display the line after you
make the change, enter the p (print) subcommand.

• To substitute text for the first matching string on the current working line, enter:

s/oldtext/newtext/

• To substitute text for the first matching string on a specified line, enter:

ns/oldtext/newtext/

where n is the number of the line.
• To substitute text for the first matching string on more than one line, enter:

a1,a2s/oldtext/newtext/

where a1 is the number (or "address") of the first line to be changed and a2 is the number of the last
line to be changed.

• To change every occurrence of a string on more than one line, enter:

a1,a2s/oldtext/newtext/g

where a1 is the number of the first line to be changed and a2 is the number of the last line to be
changed. g is the global operator.

To change every occurrence of a string on one line, enter:

Editing Files

Chapter 14. Editing Files 137

ns/oldtext/newtext/g

g is the global operator.
• To delete a word or string, enter:

s/oldtext//

Inserting Text at the Beginning or End of a Line
Using the s (substitute) subcommand and these two special substitution characters, you can insert text at
the beginning or end of a line:
‸ (circumflex)

Inserts text at the beginning of the line.
$ (dollar sign)

Inserts text at the end of the line.

• To insert text at the beginning of the current working line, enter:

s/‸/newtext

• To insert text at the beginning of a specified line, enter:

ns/‸/newtext

where n is the number of the line. This line becomes the current working line.
• To insert text at the end of the current working line, enter:

s/$/newtext

• To insert text at the end of a specified line, enter:

ns/$/newtext

where n is the number of the line. This line becomes the current working line.

Deleting Lines of Text
Use the d (delete) subcommand to delete one or more lines of text. After you delete a line, the first line
following the deleted line (or lines) becomes the current working line. After a line is deleted, the
remaining lines in the buffer are renumbered.

• To delete the current working line, enter:

d

• To delete a specific line number, enter:

nd

where n is the line number.
• To delete more than one line, enter:

a1,a2d

where a1 is the number of the first line and a2 is the number of the last line.

Changing Lines of Text
To replace one or more lines with one or more new lines, use the c (change) subcommand. This actually
deletes the lines you want to replace and then inserts the new lines.

1. Enter:

Editing Files

138 z/VM: z/VM 7.2 OpenExtensions User's Guide

a1,a2c

where:

a1 is the number of the first line to be deleted.
a2 is the number of the last line to be deleted.

2. Type the new lines, pressing ENTER at the end of each line.
3. End the insert by typing a . (period) on a line by itself.

Inserting Lines of Text
To insert one or more lines of new text into the edit buffer, use the i subcommand.

1. You can specify the subcommand in one of two ways, depending on how you want to identify the line
that the new lines are to be inserted before:

• If you know the number of the line that you want to insert the new lines before, enter:

ni

where n is the number of that line.
• To identify the line that the new lines are to be inserted before by words or a string of characters in

the line (known as a regular expression), enter:

/regexp/i

where regexp is one or more words or a string of characters.
2. Enter the new lines.
3. End the insert by typing a . (period) on a line by itself.

Copying Lines of Text
You can copy one or more lines within the edit buffer, using the t (transfer) subcommand.

To copy one line, enter:

a1tn

where:

a1 is the number of the line to be copied.
n is the number of the line that the line is to be copied after.

To copy a block of lines, enter:

a1,a2tn

where:

a1 is the number of the first line in the block of lines to be copied.
a2 is the number of the last line in the block of lines to be copied.
n is the number of the line that the lines are to be copied after.

To copy lines to the top of the edit buffer, use 0 as the line number for the lines to be copied after.

To copy lines to the bottom of the edit buffer, use $ as the line number for the lines to be copied after.

Editing Files

Chapter 14. Editing Files 139

Moving Lines of Text
Use the m (move) subcommand to move a block of lines to a different position in the edit buffer. After the
text is moved, the last line in the block of lines becomes the current working line. Enter:

a1,a2mn

where a1 is the number of the first line in the block, a2 is the number of the last line in the block, and n is
the number of the line that the block of lines are to be moved after.

To move text to the top of the buffer, use 0 as the line number for the lines to be moved after.

To move text to the end of the buffer, use $ as the line number for the lines to be moved after.

Undoing a Change
To "undo" a change, use the u subcommand. This subcommand undoes the changes made by the last
subcommand that changed the buffer. For the purposes of u, subcommands that change the buffer are: a,
c, d, g, G, i, j, m, r, s, t, v, V, and n.

Entering a Shell Command While Using ed
To temporarily switch out of the ed program and run a shell command, enter:

!commandname

Ending an ed Edit Session
When you have finished working with a file, you save the changes by entering:

w

To end the edit session, enter:

q

If you enter q without entering w to save the buffer first, the changes you have made are not saved.

Default Permissions
When you create a file using the ed editor, its default permissions are

owner=rw-
group=rw-
other=rw-

The octal number is 666.

Using sed to Edit a BFS File

Using the Shell
sed is a noninteractive editor. This means that you do not use it in an interactive session. You enter the
sed command specifying a file containing editing commands and a data file and it produces an edited
target file with no user interaction. sed is intended for systematic editing, as opposed to the usual editing-
on-the-fly performed by interactive users.

sed subcommands are similar to those used with ed, except that sed commands view the input text as a
stream rather than as a directly addressable file. Each line of the file containing editing commands has up
to two addresses, a single-letter command, possible command modifiers, and an ending newline
character.

Editing Files

140 z/VM: z/VM 7.2 OpenExtensions User's Guide

For more details on sed, see z/VM: OpenExtensions Commands Reference.

Editing Files

Chapter 14. Editing Files 141

Editing Files

142 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 15. Printing Files

If you are a workstation user, you are probably accustomed to having a printer close by, if not on your
desk. In contrast, the VM system intentionally screens the user from printer knowledge and uses a pool of
printer resources.

You can, of course, download BFS files and print them at your workstation. However, it may be more
convenient to have the shell send print jobs to VM system printers. In addition, you may want to use the
large-volume printing facilities offered by VM.

Formatting Files for Online Browsing or Printing

Using the Shell
Using shell commands, you can format a file in a certain way for browsing or printing. Later, with the lp
command, you can send the formatted file to be printed.

If you want to format and print a file immediately, you can request this printing as a single piped
command.

To format an BFS file, use the pr command; for example:

pr -2 report1

This command requests the shell to format for printing in two columns a file named report1, sending the
output to standard output (your workstation screen). The file appears in the format you selected on your
screen. There are many format options for the pr command, as described in z/VM: OpenExtensions
Commands Reference.

If, instead, you had redirected standard output to a file named report2, you could later print the file by
entering:

lp report2

This would request the printing of the formatted file in report2; because the dest option is not specified,
the file is sent to the default printer destination.

If you want to format a file and print it right away, you can join the requests using a pipe. (See “Using a
Pipe” on page 38 for more information on using a pipe.) For example:

pr -2 report1 | lp

formats and prints the file report1.

To save the formatted output as well as print it, try:

pr -2 report1 | tee report2 | lp

This command formats report1, pipes the formatted output to tee, which writes it to report2 and at
the same time pipes report2 to the next command, lp, which sends the input to the printer queue. The
formatted output is saved in report2.

Printing Requests in Shell Scripts
Including print requests in a shell script may limit the portability of the shell script because printer
configuration options in other operating systems may differ. To minimize the work to port the shell script
to another system, be sure to identify environment assumptions and aliases that may have been used.

Printing Files

© Copyright IBM Corp. 1993, 2020 143

Printing with the lp Command

Using the Shell
You can use the lp command to send a previously formatted file to a printer:

lp filename

You can specify more than one file name with the command. The lp command uses existing VM printer
facilities. Because a default printer destination is assigned to you, you do not need to specify a destination
(with the -d dest option) when entering the lp command. However, you can specify a destination other
than the default by using the -d dest option.

Class is a frequently used option, and at your site there may be several different classes defined. For
instance, C may be designated the class for confidential information. Suppose you want to print the file
temp.prt using the default printer destination and specifying class C; you would enter it in either of
these ways:

lp -d ,c temp.prt

lp -d,c temp.prt

The parameters on the -d option are positional, so if you omit a destination, you must still include the
comma.

To specify the number of copies you want printed, use the -n option. For example,

lp -n 2 report2

requests the printing of two copies of the formatted file in report2 to the default printer destination.

Printing with CMS Commands

Using CMS
Many VM systems have elaborate printing facilities based on Advanced Function Printing™ products.
These facilities are generally accessed through REXX execs provided by the system administrator. They
require the files to be printed to be either on accessed minidisks or SFS directories. To use these printing
facilities, first copy the file from BFS to a minidisk or SFS directory. For example if you want to print the
file output.list that resides in your working directory, issue the command:

openvm getbfs output.list output list

Then, invoke your installation's printing utility to print the file.

For simple printing of character files, CMS provides the PRINT command. Once you have the file on a
minidisk on SFS directory, you can print the file OUTPUT LIST through the following command:

print output list

The attributes and status of your print file can then be checked via the command:

query print

Printing Files

144 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 16. Copying Files

You can copy:

• CMS record files into the byte file system (BFS).
• BFS files into CMS record files.
• BFS files into other BFS files.

BFS files can be files in NFS-mounted remote file systems.

To move data between BFS files and CMS native record files, use these commands:
OPENVM PUTBFS

Puts (copies) a CMS record file into the BFS. You can select code page conversion for singlebyte data.
OPENVM GETBFS

Gets a BFS file and copies it into a CMS record file. You can select code page conversion for singlebyte
data.

To read about OPENVM GETBFS and OPENVM PUTBFS commands, see z/VM: OpenExtensions Commands
Reference.

Executable Modules. You can also copy executable modules into and out of the BFS using the OPENVM
GETBFS and OPENVM PUTBFS commands.

Copying a CMS Record File into a BFS File
You might want to copy a CMS record file to a BFS file so that:

• The data can be used by a program running under the shell.

Copying Files

© Copyright IBM Corp. 1993, 2020 145

• You can compile and build it in the shell using the make command.

If you are moving the file permanently to the BFS, use the CMS ERASE command to delete the file from
the record file system after copying it.

Use the CMS OPENVM PUTBFS command to do the copy. You can enter OPENVM PUTBFS in CMS, in the
shell, or in XEDIT. See “Where You Can Enter a CMS Command” on page 87 for information on entering
CMS commands in CMS, the shell, and XEDIT.

OPENVM PUTBFS
The OPENVM PUTBFS command syntax is:

OPENVm PUTbfs fileid pathname2

(Options

)

fileid
fn ft *

fm

dirid

pathname1

Options

NEWFile

REPlace

BFSLine NL
1

BFSLine NONE

NL

CRLF

/string/

/hexstring/

MODule

NEWDate

OLDDate

NOTRAnslate

TRAnslate codepage1 TO codepage2

Notes:
1 BFSLINE NL is the default unless the ft of fileid is MODULE.

Copying Files

146 z/VM: z/VM 7.2 OpenExtensions User's Guide

Example: Using OPENVM PUTBFS with a CMS Record File

If the user that has the user ID of TURBO wants to copy a CMS record file into a BFS file, he might enter
the following CMS OPENVM PUTBFS command:

openvm putbfs oct17 data vmsysu:turbo.workload.totals /u/turbo/wkld/totals/oct17.data (TRANSLATE nnn TO
1047

This command:

• Copies the CMS record file OCT17 DATA from VMSYSU:TURBO.WORKLOAD.TOTALS to a text file with
the path name /u/turbo/wkld/totals/oct17.data.

• Converts the data from the VM country-extended code page nnn to code page IBM-1047. If you do not
want conversion, omit the TRANSLATE operand; For more information, see “Understanding Code Page
Conversion” on page 19.

• Sets a default mode based on the current setting of the file mode creation mask (read-write-execute
permission) if oct17.data is a new file.

Copying a BFS File to a CMS Record File
You might want to copy a BFS file into a CMS record file

The OPENVM GETBFS command copies a BFS file into another BFS file, an SFS directory, or onto a CMS
minidisk.

OPENVM GETBFS
The OPENVM GETBFS command syntax is:

OPENVm GETbfs pathname1 fileid

(Options

)

fileid

fn ft
A

fm

dirid

pathname2

Options

Copying Files

Chapter 16. Copying Files 147

NEWFile

REPlace

BFSLine NL
1

BFSLine lrecl

CRLF

/string/

/hexstring/

MODule

NEWDate

OLDDate

NOTRAnslate

TRAnslate codepage1 TO codepage2

Notes:
1 BFSLINE NL is the default unless the ft of fileid is MODULE.

For a complete command descriptions see z/VM: OpenExtensions Commands Reference.

Copying a BFS File to Another BFS File
You can use the shell command cp or the CMS commands OPENVM GETBFS or OPENVM PUTBFS to copy
files within the BFS.

Use the cp shell command to copy:

• One file to another file in the working directory
• One file to a new file on another directory
• A set of directories and files to another place in your file system

cp copies one or more files to a new location.

cp file1 file2

copies the contents of file1 into file2. To copy a list of files to the specified directory, enter:

cp file1 file2 file3 ... directory

For example:

cp dir1/a dir2/b dir3

copies two files a and b into the directory called dir3. The copied files have same the file names as the
original, so you will find files a and b in the directory dir3.

For further information on the cp command, see z/VM: OpenExtensions Commands Reference.

Copying Files

148 z/VM: z/VM 7.2 OpenExtensions User's Guide

Chapter 17. Transferring Files between Systems

You may typically create applications and files at your workstation and then move the resulting files to the
byte file system (BFS) for further application development—such as compiling and debugging or to share
the files. There may also be times when you want to send BFS files to your workstation.

To move a file or file system between your workstation and the BFS, you can use one of these:

• The File Transfer Protocol (FTP) facility of TCP/IP, when both the workstation and VM system have
TCP/IP installed.

• The SEND and RECEIVE programs available with PC 3270 emulation programs and with OS/2 Extended
Edition Version 1.2 or later.

Note: Before using the SEND and RECEIVE programs, you must be working in CMS. If you are working in
the shell, use exit to return to CMS command mode before using the programs.

Transferring to the Byte File System
You can use NFS to mount the file system in your byte file system. Then you can use the files as if they
were in the local BFS. Or you can perform the following procedure.

First transfer the file to the host. Then, while working at the host, perform these steps:

1. Copy the file from the CMS record file system into the BFS, using the OPENVM PUTBFS command.

If you need to convert to a shell-supported code page, use the TRANSLATE option on the OPENVM
PUTBFS command. See “OPENVM PUTBFS” on page 146.

2. If desired, after the copy you can delete the CMS record file with the CMS ERASE command.

Transferring a File to the Workstation
If you have an NFS client on your workstation, you can use NFS to mount the byte file system so that it
appears to be a drive on your workstation.

If you do not have an NFS client on your workstation, then at the host, perform these steps:

1. Copy the BFS file to an CMS native record file using the OPENVM GETBFS command.

Singlebyte data: If you need to convert to a different code page, you can use the (TRANSLATE option
on the OPENVM GETBFS command.

2. If desired, after the copy you can delete the BFS file with the rm shell command or the OPENVM ERASE
command.

3. Then transfer the file to the workstation.

Transporting an Archive File on Tape or Diskette
A directory or file system that is going to be transported on tape or diskette is put into an archive file, as
discussed in “Backing Up and Restoring Files: The Options” on page 112. This section discusses the steps
involved in:

• Installing an archive file from tape or diskette into an BFS file system
• Putting an archive file on tape or diskette to send to another site

Transferring Files

© Copyright IBM Corp. 1993, 2020 149

Putting an Archive File into a Byte File System
You may receive an archive file on tape or diskette. There are two major steps involved in installing the
archive file in an BFS file system:

1. Transferring the archive file into a CMS record file from a workstation.
2. Copying the archive file into the byte file system (BFS).

Step 1. Transferring the Archive File to a Record File

From a Workstation

If you have TCP/IP on your workstation, you can use the File Transfer Protocol (FTP) command to transfer
an archive file to VM. At the workstation:
a.

Copy the archive file into a file from one of these:

• A diskette for a PS/2 or an RS/6000®

• A tape for an RS/6000

b
Use a file transfer tool (such as FTP) to copy the file from the workstation to VM in binary mode.

c.
Go to “Step 2. Copying the File into the Byte File System” on page 150.

From a Tape Drive on Your VM System

If you have an archive file on tape and the necessary tape drive at your VM system, you can copy the file
directly from the tape into a BFS directory.

Working at VM
a.

Copy the archive file from the tape into a BFS directory using the OPENVM PARCHIVE command.
b.

Go to “Step 2. Copying the File into the Byte File System” on page 150, which follows.

Step 2. Copying the File into the Byte File System
a.

If the archive file has been placed in the record file system, use the OPENVM PUTBFS command with
the (BFSLINE NONE option to copy the file into the BFS. See “OPENVM PUTBFS” on page 146 for
more information. The archive file becomes a single file in the file system.

b.
Use the pax, tar, or cpio shell command to restore the directory or file system from the archive file;
all the component files are restored from the archive file.

If you need to convert the source to the code page IBM-1047 used in the OpenExtensions shell, use
the pax command with the -o option. See “Backing Up and Restoring Files: The Options” on page 112
for more information.

Sending an Archive File to Others
You may want to send an archive file on tape or diskette. There are two major options available.

1. A diskette or tape at a workstation
2. A tape at your VM system

For both options you must first use the pax, tar, or cpio shell command to create the archive file for a
directory or file system. All the component files are stored in one archive file.

Transferring Files

150 z/VM: z/VM 7.2 OpenExtensions User's Guide

If you need to convert to a different code page than the one used in the OpenExtensions shell, use the
pax command with the -o option. See “Backing Up and Restoring Files: The Options” on page 112 for
more information.

Option 1. Copying to a Diskette or Tape at a Workstation
a.

Create the archive file as described above.
b.

Use OPENVM GETBFS to move the file to CMS file system.
c

Use a file transfer tool (such as FTP) to copy the file from VM to the workstation in binary mode.
d.

At the workstation, copy the archive file onto one of these:

• A diskette, for a PS/2 or RS/6000
• A tape, for an RS/6000

Option 2. Transferring the Archive File to a Tape at the Host
a.

Create the archive file as described above.
b.

Use the OPENVM PARCHIVE command to copy the archive file from the BFS to the tape.

Transferring Files

Chapter 17. Transferring Files between Systems 151

Transferring Files

152 z/VM: z/VM 7.2 OpenExtensions User's Guide

Appendix A. DIRPOSIX Utility

DIRPOSIX

USER DIRECT * USER $DIRECT =

infn

DIRECT * = $DIRECT =

inft

* = $inft =

INFM

= $INFT =

OUTFN

$INFT =

OUTFT
=

OUTFM

(
1

Options

Options
MINUID 200

MINUID minuid

MAXUID 2147483647

MAXUID maxuid

PRIMarygroup gname

gid

SYSentries

NOSYSentries

ONLYSYS

REPlace

Notes:
1 You can enter Options in any order after the parenthesis, but one option must be chosen.

Purpose

Use the DIRPOSIX utility to add POSIX information to a user directory source file. It performs the
following functions:

• Assigns a unique UID to each userid that has no UID specification and is not listed in the DIRPOSIX
USEREXCL file. See usage note “10” on page 155 for more information.

• Assigns a primary group to each userid that has no primary group specification and is not listed in the
DIRPOSIX USEREXCL file.

• Adds the standard “system” group definitions and the standard “system” user definitions, if they do not
already exist. See usage note “12” on page 156 for more information.

DIRPOSIX

© Copyright IBM Corp. 1993, 2020 153

DIRPOSIX provides a mechanism for reserving installation-specified UIDs; it will not assign any UIDs
listed in the DIRPOSIX UIDEXCL file. See usage note “11” on page 155 for more information.

Operands
infn

is the file name of the input user directory file. The default is USER.
inft

is the file type of the input user directory file. The default is DIRECT.
infm

is the file mode of the input user directory file. If it is not specified, the default file mode is asterisk (*),
and DIRPOSIX uses the CMS file search order to locate the input user directory file.

outfn
is the file name of the output user directory file. If outfn is omitted or specified as ‘=’, the output file
has the same file name as the input file.

outft
is the file type of the output user directory file. If outft is specified as ‘=’, the output file has the same
file type as the input file. The default is described by $inft.

$inft
is the default file type of the output user directory file. The name is the result of the concatenation of
‘$’ with the first 7 characters of the file type of the input file.

outfm
is the file mode of the output user directory file. The default is =. If outfm is omitted or specified as ‘=’,
the output file has the same file mode as the input file.

MINUID minuid
specifies the minimum UID that DIRPOSIX is permitted to assign. It is the lower bound of the UID
range that DIRPOSIX uses when determining the first UID to be assigned. No UIDs below minuid will
be assigned by DIRPOSIX. minuid must be between 10 and 4294967000 inclusive, and it must be no
larger than maxuid. The default MINUID value is 200.

MAXUID maxuid
specifies the maximum UID that DIRPOSIX is permitted to assign. It is the upper bound of the UID
range that DIRPOSIX uses when determining the first UID to be assigned. No UIDs above maxuid will
be assigned by DIRPOSIX. maxuid must be between 10 and 4294967000 inclusive, and it must be no
smaller than minuid. The default MAXUID value is 2147483647 (X'7FFFFFFF'). 4294967001 to
4294967293 are reserved for installation use. They will not be assigned by DIRPOSIX.

PRIMarygroup gname gid
specifies the primary group to be assigned to each userid that has no primary group specification and
is not listed in the DIRPOSIX USEREXCL file. DIRECTXA and DIRPOSIX support mixed case POSIX
group names, so care should be taken when specifying gname.

If gid is not specified, then the source directory file must already contain a POSIXGROUP definition for
gname. If both gname and gid are specified and the source directory file does not already contain a
POSIXGROUP definition for gname, then DIRPOSIX adds a POSIXGROUP statement to the directory to
define the group. The gid operand must specify a number between zero and 4294967295.

SYSentries
specifies that DIRPOSIX should add the standard system group definitions and the standard system
users. See usage note “12” on page 156 for more information.

NOSYSentries
specifies that DIRPOSIX should not add the standard system group definitions nor the standard
system users.

ONLYSYS
specifies that DIRPOSIX should add the standard system group definitions and the standard system
users along with their associated values, but no other changes should be made. See usage note “14”
on page 157 for more information.

DIRPOSIX

154 z/VM: z/VM 7.2 OpenExtensions User's Guide

REPlace
indicates that DIRPOSIX may overwrite an existing output file with the new output file. The input file
cannot be the same as the output file.

A temporary file is created by the name of DIRPOSIX $TEMPDIR. As a result, this name cannot be used as
an input or output file name.

Usage Notes

1. For a complete description of the directory control statements, see z/VM: CP Planning and
Administration.

2. The DIRPOSIX utility can be used to convert a non-POSIX directory file to one that contains basic,
meaningful POSIX information. It may be run multiple times against the same source directory; this is
useful for adding POSIX information to the directory entries of newly added userids.

3. The source directory file to be processed may be in either the monolithic format or the cluster format.
The directory file created by DIRPOSIX is always in the monolithic format. For cluster format, the
name of the index file is specified as the input file.

4. Users with no POSIX information in their directory entry have UIDs and primary group specifications
assigned by DIRECTXA. DIRECTXA assigns default values to these users. See z/VM: CP Commands
and Utilities Reference for details on the default values.

5. DIRPOSIX ignores PROFILE definitions. They are not assigned UIDs or primary groups by DIRPOSIX,
and they are not considered when determining if a user has a UID or primary group specification.
DIRPOSIX adds a POSIXINFO statement to each user that needs data assigned. Less source
directory DASD space would be utilized if the data that is common to multiple users was added within
a profile.

6. DIRPOSIX ignores POOL users. They are not assigned UIDs or primary groups by DIRPOSIX.
7. By default, DIRPOSIX reserves certain ranges of UIDs for the directory administrator to use as

desired. The MINUID and MAXUID specifications can be used to reserve different ranges. They can
also be used to permit DIRPOSIX to use a larger UID range than the default values.

8. DIRPOSIX will assign UIDs beginning one past the largest UID currently in use in the range of
available UIDs. The only exception to this rule is that the special POSIX users are assigned specific
UIDs rather than the next available UID.

9. DIRPOSIX can be used to assign a specific UID to a certain userid. If all but one of the users in the
directory already have UIDs or are listed in the DIRPOSIX USEREXCL file, then only that one userid
will be processed by DIRPOSIX. By specifying the same value for MINUID and MAXUID, DIRPOSIX is
forced to assign that UID to the user. This technique is useful for assigning a specific UID to a new
userid.

10. The DIRPOSIX USEREXCL file can be used to prevent DIRPOSIX from adding POSIX information to
certain users' directory entries. All users who should not have POSIX information must be listed in
the DIRPOSIX USEREXCL file prior to running DIRPOSIX.

DIRPOSIX USEREXCL allows one or more userids to be specified on each line. If more than one
userid is listed, one or more blanks must separate each entry. If asterisk (*) is the first non-blank
character, the whole line is treated as a comment. If there is a need to have a userid begin with an *,
place a userid that does not have a beginning * first on the same line in the file.

11. The DIRPOSIX UIDEXCL file can be used to prevent DIRPOSIX from reusing UIDs that were once
assigned but are now available. Because the ownership of POSIX files is based on UIDs, if a user who
has created POSIX files is later deleted from the directory, and that user's UID is reused by another
userid, then the other userid has become the owner of the files. Any other privileges based on UID
will be similarly granted to the other userid. Reusing UIDs is not recommended without careful
consideration of the potential implications.

Installations that use DIRPOSIX to assign UIDs to new users should consider using the DIRPOSIX
UIDEXCL file to prevent the reuse of UIDs of deleted userids. When a userid is deleted from the
directory, that user's UID could be added to the DIRPOSIX UIDEXCL file.

DIRPOSIX

Appendix A. DIRPOSIX Utility 155

DIRPOSIX UIDEXCL allows one or more UIDs to be specified on each line. If more than one UID is
listed, one or more blanks must separate each entry. If asterisk (*) is the first non-blank character,
the whole line is treated as a comment. All invalid UIDs are ignored.

12. If SYSENTRIES is in effect, the following POSIX groups are added, if groups with these names are not
already defined:

Group name GID

system 0

staff 1

bin 2

sys 3

adm 4

mail 6

security 7

nobody 4294967294

In addition, the following POSIX users are added, if they are not already defined:

Userid UID Primary group

root 0 system

daemon 1 staff

bin 2 bin

sys 3 sys

adm 4 adm

nobody 4294967294 nobody

default 4924967295 DEFAULT

Each user added has the following attributes:

• A password of NOLOG, indicating that this userid is not permitted to log on to the system. If your
installation needs to log on to one of these users, that user's directory entry must be updated with
a real password.

• Default and maximum storage sizes of 32M.
• Privilege class G only.
• No virtual devices.

If a special userid already exists with UID and/or primary group defined, that information will not be
changed. However, the UID and/or primary group that is not already defined will be updated to values
indicated in the above table.

If the UID for a special userid is already in use, the UID will be assigned to the special user and a
warning message will be issued that indicates which other userid has that UID already assigned to it.

Note: Some External Security Managers (ESMs) may not support all of the entries created by the
SYSENTRIES option. If you have an ESM installed, refer to the ESM publications for possible
restrictions.

13. If SYSENTRIES is in effect, the user DEFAULT is created. This may be a problem in certain
environments, such as if a profile exists with the name DEFAULT and a user DEFAULT exists (just

DIRPOSIX

156 z/VM: z/VM 7.2 OpenExtensions User's Guide

added). This can cause confusion when updating the directory for certain programs that have a
restriction of objects not having the same name.

14. If ONLYSYS is specified, the standard system group definitions and the standard system users will be
defined if they do not already exist. If a system group or user ID already exists, its definition is not
changed by DIRPOSIX, even if the definition does not match the tables in usage note “12” on page
156.

15. The internal form of the SYSAFFIN directory control statement may affect the assignment of a UID or
a primary group (or both). If one or more POSIXINFO statements exist for different systems due to
SYSAFFIN statements, then a UID and/or a primary group is not assigned to that user.

16. DIRPOSIX LOGFILE is created or appended to when DIRPOSIX executes. The logfile is a running
history of the changes that DIRPOSIX has made (informational messages) as well as warning
messages (potential conflicts). The file mode for DIRPOSIX LOGFILE is outfm or = (the same file
mode as the created directory output file).

Examples

1. To invoke DIRPOSIX for file SYSTEM1 DIRECT C to assign unique UIDs in the range 200 to
2147483647 (the default values) to the userids that do not have a UID assigned, and with the
standard system groups and users defined (default option), enter the following:

dirposix system1 direct c

As a result of this invocation, SYSTEM1 $DIRECT C will be created and DIRPOSIX LOGFILE C will be
created or added to.

2. To invoke DIRPOSIX for file USER DIRECT * to assign unique UIDs in the 1000 to 2000 range to the
userids that do not have a UID assigned, and with the standard system groups and users defined
(default option) and replacing the output file (if found), enter the following:

dirposix (minuid 1000 maxuid 2000 replace

As a result of this invocation, USER $DIRECT * will be created or replaced, and DIRPOSIX LOGFILE *
will be created or added to. (* indicates the file mode where USER DIRECT was found.)

3. To invoke DIRPOSIX for file USER DIRECT B to assign unique UIDs in the 50 to 999 range (except 100,
342, 511, 1000, 1995, 2000, 4096, 8192, 16384, 500000, and 3000000, which are in DIRPOSIX
UIDEXCL *) to the userids (except ESM, OPERATOR, *USER, DEFAULT, DONTUSE, and POSIX, which
are in DIRPOSIX USEREXCL *), with a primary group name of ClassG and the group id being 512, not
adding the standard system group and user definitions, and replacing the output file (if found), enter
the following:

dirposix user direct b = = h (minuid 50 maxuid 999
 prim classg 512 nosys rep

As a result of this invocation, USER $DIRECT H will be created or replaced, and DIRPOSIX LOGFILE H
will be created or added to.

DIRPOSIX USEREXCL could look like:

* this line is a comment
ESM
OPERATOR *USER DEFAULT
DONTUSE POSIX

DIRPOSIX UIDEXCL could look like:

* this line is a comment
100 342 511 1000
1995
 2000
 4096 8192
* this line is another comment

DIRPOSIX

Appendix A. DIRPOSIX Utility 157

16384
 500000 3000000

Return Codes
Code

Meaning
1

Invalid UID value minuid specified on field MINUID.
2

Invalid UID value maxuid specified on field MAXUID.
3

Parameter keyword parm was specified more than once or it conflicts with a previously specified
entry.

4
Invalid Group name gname specified on field PRIMARYGROUP.

5
Unknown parameter parm given.

6
Input File infn inft infm not found or disk not accessed.

7
Output file outfn outft outfm exists and REPLACE option was not used.

8
Filemode outfm is not accessed read/write.

9
File specification infn inft infm is invalid.

10
UID specified on the MINUID (minuid) is below the minimum allowed UID value of 10.

11
Input file can not equal output file.

12
Value for MAXUID is less than the value for MINUID. This is not allowed.

13
The range of UIDs is not sufficient to assign a unique UID to each user in the input directory.

15
DIRPOSIX $TEMPDIR is a reserved filename. This filename can not be used as the input or output file
specification for DIRPOSIX.

16
Invalid command line specification. Please check the command syntax.

100
Userid userid appears in the 'system users list' but is in the directory as a PROFILE entry.

101
Group gname appears in the 'system groups list' and is also specified in the current directory source.
The GID is different between the two specifications. The directory version of this group will be
respected.

102
The group you specified as your 'primary group' was defined in the source directory as having a GID
equal to gid. This value for the GID is being used.

103
The group you specified as your 'primary group' was not defined in the source directory. No GID was
provided on the command line. The operation involving the assignment of a primary group to each
user will not take place.

DIRPOSIX

158 z/VM: z/VM 7.2 OpenExtensions User's Guide

104
Attention: The group you specified as your 'primary group' (pipe) is also defined as a system group to
be added. The GID listed on the primary group specification (pipe) conflicts with the GID from the
system group list (pipe). The primary group GID is being changed to reflect the GID from the system
group specification.

105
Attention: A profile profile was detected with the same name as a system user id. While profile and
user entries with the same name are allowed this could pose problems for some directory
maintenance products.

106
Attention: A primary group of DEFAULT was specified with an optional GID. The DEFAULT group is
used as a system default when assigning group membership to users without a specific GID or group
name specified on their POSIXINFO directory statements. While the use of this value as the primary
group is valid it should be noted that a POSIXGROUP statement will not be added for this entry. The
trailing GID you provided will be ignored.

201
DirPosix Operation Starting date_and_time Command Line Parms: command_line_parms

202
Altered User userid UID uid

203
Left User userid UID uid

204
Skipped User userid - - - - User found in the excluded list

205
Added Group gname GID gid

206
Added User userid UID uid GNAME gname

207
Altered User userid uid gname

208
Skipped User userid - - - - Multiple sysaffin for POSIXINFO detected

209
Operation complete without severe errors.

210
Operation complete but errors were encountered.

301
Attention: DirPosix was unable to locate a DIRPOSIX USEREXCL file. No users are being considered
excluded from DirPosix processing.

302
DirPosix is using fn ft fm as the USER EXCLUDE file.

303
Attention: DirPosix was unable to locate a DIRPOSIX UIDEXCL file. No UIDs are being considered
excluded from DirPosix processing.

304
DirPosix is using fn ft fm as the UID EXCLUDE file.

305
DirPosix processing starting. Depending on the size of your source directory this could take awhile.

306
Attention: userid userid currently has a UID of uid. This is in conflict with a system user. The system
user will be added but beware of the ramifications of users sharing UID values.

DIRPOSIX

Appendix A. DIRPOSIX Utility 159

3209
Unexpected return code rc from pipe pipe

3210
Unexpected return code rc from command: command_line

3408
While processing directory entry userid, an error was detected while attempting to process a
POSIXINFO quoted string. Specifically, two quoted strings were found to be adjacent to each other.
For example: 'aaaaaa'"bbbbb"

This is not allowed.

DIRPOSIX

160 z/VM: z/VM 7.2 OpenExtensions User's Guide

Appendix B. OpenExtensions Shell Command
Summary

The following list presents OpenExtensions shell commands and utilities grouped by the task a user might
want to perform. Similar tasks are organized together. Commands that are OpenExtensions extensions to
POSIX.2 are indicated with an "OE."

General Use
command

Run a simple command
cms

Invoke VM commands from the shell
date

Display the date and time
echo

Write arguments to standard output
print

Return arguments from the shell
printf

Write formatted output
sh

Invoke a shell (command interpreter)1
time

Display processor and elapsed times for a command
whence

Tell how the shell interprets a command name

Controlling Your Environment
alias

Display or create a command alias
env

Display environments, or set an environment for a process
export

Set the export attributes for variables, or show currently exported variables
fc

Process a command history list
id

Return the user identity
locale

Get locale-specific information
logger

Log messages

1 Use OPENVM SHELL to invoke the OpenExtensions shell initially.

Command Summary

© Copyright IBM Corp. 1993, 2020 161

logname
Return a user's login name

newgrp
Change to a new group

readonly
Mark a variable as read-only

return
Return from a shell function or . (dot) script

set
Set or unset command options and positional parameters

shift
Shift positional parameters

stty
Set or display terminal options

su
Start a shell that runs with superuser privileges

touch
Change the file access and modification times

tty
Return the user's terminal name

unalias
Remove alias definitions

uname
Display the name of the current operating system

unset
Unset values and attributes of variables and functions

Managing Directories
basename

Return the nondirectory components of a path name
cd

Change the working directory
dirname

Return the directory components of a path name
ls

List file and directory names and attributes
mkdir

Make a directory
mv

Rename or move a file or directory
pathchk

Check a path name
pwd

Return the working directory name
rm

Remove a directory entry
rmdir

Remove a directory

Command Summary

162 z/VM: z/VM 7.2 OpenExtensions User's Guide

Managing Files
cat

Concatenate or display a text file
chgrp

Change the group owner of a file or directory
chmod

Change the mode of a group or directory
chown

Change the owner or group of a file or directory
cksum

Calculate and write checksums and byte counts
cmp

Compare two files
comm

Show and select or reject lines common to two files
cp

Copy a file
cut

Cut out selected fields of each line of a file
dd

Convert and copy a file
diff

Compare two text files and show the differences
ed

Use the ed line-oriented text editor
find

Find a file meeting specified criteria
fold

Break lines into shorter lines
head

Display the first part of a file
iconv

Convert characters from one code set to another
join

Join two sorted, textual relational databases
ln

Create a link to a file
mkfifo

Make a FIFO special file
mknod OE

Make a FIFO or character special file
od

Dump a file in a specified format
paste

Merge corresponding or subsequent lines of a file
sed

Start the sed noninteractive stream editor

Command Summary

Appendix B. OpenExtensions Shell Command Summary 163

sort
Start the sort-merge utility

tail
Display the last part of a file

tee
Duplicate the output stream

tr
Translate characters

umask
Set or return the file mode creation mask

uniq
Report or filter out repeated lines in a file

wc
Count newlines, words, and bytes

Printing Files
lp

Send a file to a printer
pr

Format a file in paginated form and send it to standard output

Computing and Managing Logic
bc

Use the arbitrary-precision arithmetic calculation language
break

Exit from a for, while, or until loop in a shell script
colon or :

Do nothing, successfully
continue

Skip to the next iteration of a loop in a shell script
dot or .

Run a shell file in the current environment
eval

Construct a command by concatenating arguments
exec

Run a command and open, close, or copy the file descriptors
exit

Return to the parent process from which the shell was called or to CMS
expr

Evaluate arguments as an expression
false

Return a nonzero exit code
grep

Search a file for a specified pattern
let

Evaluate an arithmetic expression

Command Summary

164 z/VM: z/VM 7.2 OpenExtensions User's Guide

test
Test for a condition

trap
Intercept abnormal conditions and interrupts

true
Return a value of 0

Controlling Processes
bg

Move a job to the background
fg

Bring a job into the foreground
jobs

Return the status of jobs in the current session
kill

End a process or job, or send it a signal
nohup

Start a process that is immune to hangups
ps

Return the status of a process
sleep

Suspend execution of a process for an interval of time
time

Display processor and elapsed times for a command
wait

Wait for a child process to end

Writing Shell Scripts
getconf

Get configuration values
getopts

Parse utility options
read

Read a line from standard input
type

Tell how the shell interprets a name
typeset

Assign attributes and values to variables
xargs

Construct an argument list and run a command

Developing or Porting Application Programs
ar

Create or maintain library archives
awk

Process programs written in the awk language

Command Summary

Appendix B. OpenExtensions Shell Command Summary 165

c89 or cxx
Compile C or C++ source code and create an executable file

lex
Generate a program for lexical tasks

make
Maintain program-generated and interdependent files

strip
Remove unnecessary information from an executable file

yacc
Use the yacc compiler

Communicating with the System or Other Users
mailx

Send or receive electronic mail

Working with Archives
cpio

Copy in/out file archives
pax

Interchange portable archives
tar

Manipulate the tar archive files to copy or back up a file

Command Summary

166 z/VM: z/VM 7.2 OpenExtensions User's Guide

Appendix C. Using awk

 PI

awk is a programming language that lets you work with information stored in files. With awk programs,
you can:

• Display all the information in a file or selected pieces of information
• Perform calculations with numeric information from a file
• Prepare reports based on information from a file
• Analyze text for spelling, frequency of words or letters, and so on

You can combine these operations to perform quite complicated tasks.

awk allows most of the logical constructs of modern computing languages: if–else statements, while
and for loops, function calls, and so on.

This appendix introduces some of the principles and concepts of awk. Experienced programmers may
prefer to turn directly to awk in z/VM: OpenExtensions Commands Reference. For an excellent reference
for awk, see The AWK Programming Language by Alfred V. Aho, Peter J. Weinberger, and Brian W.
Kernighan (Addison-Wesley, 1988). Aho, Weinberger, and Kernighan are the people who created awk at
AT&T Laboratories, and the name awk comes from their last names.

Data Files
awk programs work with data. Programs can obtain data typed in from the workstation or from the output
of other commands (for example, through pipes), but usually data is obtained from data files.

awk's data files are always text files (not binary files). The files contain readable text—for example, words,
numbers, punctuation characters, and so on.

As an example, consider a data file named hobbies, which contains information on the hobbies of a
group of people. Each line in this file gives a person's name, one of that person's hobbies, how many
hours a week he or she spends on the hobby, and how much money the hobby costs per year. One hobby
per person appears on each separate line. The file might look like this:

 Jim reading 15 100.00
 Jim bridge 4 10.00
 Jim role playing 5 70.00
 Linda bridge 12 30.00
 Linda cartooning 5 75.00
 Katie jogging 14 120.00
 Katie reading 10 60.00
 John role playing 8 100.00
 John jogging 8 30.00
 Andrew wind surfing 20 1000.00
 Lori jogging 5 30.00
 Lori weight lifting 12 200.00
 Lori bridge 2 0.00

Figure 11. The hobbies File

This file is included with the OpenExtensions shell as /etc/samples/hobbies.

Records
An awk data file is a collection of records. A record contains a number of pieces of information about a
single item; these pieces are called fields.

Records are separated by a record separator character, which, for awk, is usually the newline character. A
newline character shows where one line of text ends and another begins; by using the newline as a record

Using awk

© Copyright IBM Corp. 1993, 2020 167

separator, each line of the file becomes a separate record. This is convenient and easy to understand;
newline is used as a record separator in all of the examples.

In the hobbies file, each line is a separate record, giving a set of information about one person's hobby.

Fields
A record consists of a number of fields. A field is a single piece of information. For example, the hobby
record:

Jim reading 15 100.00

contains four fields:

Jim
reading
15
100.00

Fields should be provided in the same order in each record. That way awk and other programs can easily
access a particular piece of information in any record.

The fields of a record are separated by one or more field separator characters. The hobbies file uses
strings of blank characters (spaces) to separate fields. By default, awk uses blanks or horizontal tab
characters to separate fields. You can change the default.

The Shape of a Program
An awk program looks like this:

pattern {actions}
pattern {actions}
pattern {actions}
 ...

Each line is a separate instruction. awk looks through the data files record by record and processes the
instructions, in the given order, on each record.

Simple Patterns
A instruction of the form:

pattern {actions}

indicates that awk is to perform the given set of actions on every record that meets a certain set of
conditions. The conditions are given by the pattern part of the instruction.

The pattern of an instruction often looks for records that have a particular value in some field. The
notation $1 stands for the first field of a record, $2 stands for the second field, and so on. For example,
here's a simple awk instruction:

$2 == "jogging" { print }

The notation == stands for "is equal to". Therefore, the instruction means: If the second field in a record is
jogging, print the entire record.

This instruction is a complete awk program. If you ran this program on the hobbies file, awk would look
through the file record by record (line by line). Whenever a line had jogging as its second field, awk
would print the complete record. The printout from the program would be:

Katie jogging 14 120.00
John jogging 8 30.00
Lori jogging 5 30.00

Using awk

168 z/VM: z/VM 7.2 OpenExtensions User's Guide

Let's take another example. Ask yourself what the following awk program does.

$1 == "John" { print }

As you probably guessed, it prints every record that has John as its first field. The printout from the
program would be:

John role playing 8 100.00
John jogging 8 30.00

You could perform the same sort of search on any text database. The only difference is that databases
tend to contain a great deal more data than this example.

If an awk instruction does not contain an action, print is assumed. The preceding examples both use the
print action; however, this action does not need to be written explicitly. Therefore, you could write the
programs as:

$2 == "jogging"

and:

$1 == "John"

and they would have exactly the same effect.

On the other hand, you can specify an action and leave out the pattern part of an instruction. In this case,
awk applies the action part of the instruction to every record in the file. For example:

{ print }

is a complete awk program that displays every record in the data file.

Using Blanks and Horizontal Tabs
You can put any number of extra blanks or horizontal tabs into awk patterns and actions.

Note: If you are using the XEDIT editor to write an awk program and want to use horizontal tabs, see
“Typing Tabs using XEDIT” on page 132.

For example, you can enter:

{ print $1 , $2 , $3 }

Applying More Than One Instruction
When an awk program contains several instructions, awk applies every appropriate instruction to the first
record, then every appropriate instruction to the second record, and so on. Instructions are applied in
order. For example, consider the following awk program, which has two instructions:

$1 == "Linda"
$2 == "bridge" { print $1 }

The output of this program is:

Jim
Linda bridge 12 30.00
Linda
Linda cartooning 5 75.00
Lori

awk looks through the file record by record. The first record to satisfy one of the patterns is:

Jim bridge 4 10.00

Using awk

Appendix C. Using awk 169

so awk prints the first field of the record (as dictated by the second instruction). The next record of
interest is:

Linda bridge 12 30.00

This satisfies the first instruction's pattern, so the whole record is printed. It also satisfies the second
instruction's pattern, so the first field is printed. awk continues through the file, record by record,
executing the appropriate actions when a record satisfies the pattern.

Assigning Values to Variables
Suppose you want to find out how many people have jogging as a hobby. To do this, you have to look
through the hobbies file, record by record, and keep a count of the number of records that have
jogging in their second field. This means that you have to remember the count from one record to the
next.

awk programs remember information by using variables. A variable is a storage place for information.
Every variable has a name and a value. An awk action of the form:

name = value

assigns the specified value to the variable that has the given name. For example:

count = 0

assigns the value 0 to the variable count.

You can use variables in expressions. For example, the value of the expression:

count + 1

is the current value of count, plus 1.

String Values
A string value is just a sequence of characters like "abc". A string value is always enclosed in quotation
marks. Any sort of characters are allowed (even digits, as in "abc123"). Strings can contain any number
of characters. A string with zero characters is called the null string and is written "".

When awk compares strings, it makes comparisons in accordance with the collating order set by the
locale defined on the system. This is a little like alphabetic order; for example, the program:

$1 >= "Katie"

prints the Katie, Linda, and Lori lines, which is what you would expect from alphabetic order.
However, collating orders differ. ASCII collating order, for example, differs from alphabetic order in a
number of respects; for example, lowercase letters are "greater" than uppercase ones, so that a is greater
than Z.

Numeric Values
A numeric value consists of digits with an optional sign and decimal point. A numeric values is not
enclosed in quotation marks. For example:

10 0.34 –78 +2.56 –.92

are all valid in awk. awk does not let you put commas inside numbers. For example, you must write 1000
instead of 1,000.

Note: awk lets you use exponential or scientific notation. Exponents are given as e or E, followed by an
optionally signed exponent. Thus:

1E3 1.0e3 10E2 1000

Using awk

170 z/VM: z/VM 7.2 OpenExtensions User's Guide

are all equivalent.

When awk compares numbers (with such operators as > or <), it makes comparisons in accordance with
the usual rules of arithmetic.

Using the print Action for Output
So far, print has been the only action discussed. As you have seen, print can display an entire record.
It can also display selected fields of the record, as in:

$2 == "bridge" { print $1 }

This displays the first field of every record with a second field that is bridge. The output is:

Jim
Linda
Lori

print can display more than a single field. If you give print a list of fields separated by commas, as in:

$1 == "Jim" { print $2,$3,$4 }

print displays the given fields separated by single blanks, as in:

reading 15 100.00
bridge 4 10.00
role playing 5 70.00

The print action can display strings and numbers along with fields. For example:

$1 == "John" { print "$",$4 }

prints:

$ 100.00
$ 30.00

In this instruction, the print action prints a string containing a $, followed by a blank, followed by the
value of the fourth field in each selected record.

As an exercise, predict the output of the following:

(a) $1 == "Lori" { print $1,"spends $", $4,"on",$2 }
(b) $2 == "jogging" { print $1,"jogs",$3,"hours a week" }
(c) $4 > 100.00 { print $1, "has an expensive hobby" }

You can check your predictions by running these programs against the hobbies file.

Running awk Programs
There are two ways to run awk programs: from a command line and from a program file.

The awk Command Line
The simplest awk command line is:

awk 'program' datafile

The awk program is enclosed in single quotation marks or apostrophe (') characters. The datafile
operand gives the name of the data file. For example:

awk '$1 == "Linda"' hobbies

processes the program:

Using awk

Appendix C. Using awk 171

$1 == "Linda"

on the data file hobbies.

If you are using the OpenExtensions shell, you can type in a multiline program within single quotation
marks, as in:

awk '
 $1 == "Linda"
 $2 == "bridge" { print $1 }
 ' hobbies

awk assumes that blanks or horizontal tabs separate fields in a record. If the data file uses different field
separator characters, you must indicate this on the command line. You can do this with an option of the
form:

–Fstring

where string lists the characters used to separate fields. For example:

awk –F":" '{ print $3 }' file.dat

indicates that the given data file uses colon (:) characters to separate record fields. The –F option must
come before the quoted program instructions.

awk also lets you define the value of variables on the command line by using the –v option. See z/VM:
OpenExtensions Commands Reference for details.

Program Files
A program file is a text file that contains an awk program. You can create program files with any text editor
(such as ed). For example, you might create a file named lbprog.awk that contains the lines:

$1 == "Linda"
$2 == "bridge" { print $1 }

To process a program on a particular data file, use the command:

awk –f progfile datafile

where progfile is the name of the file that contains the awk program and datafile is the name of the data
file. For example:

awk –f lbprog.awk hobbies

runs the program in lbprog.awk on the data in hobbies.

If the data file does not use the default separator characters, you must specify a –F option after the
progfile name, as in:

awk –f prog.awk –F":" file.dat

To gain some experience using awk, you can test the examples on the hobbies file. Run some from the
command line and some from program files.

Sources of Data
If you do not specify a data file on the command line, awk begins to read data from standard input. For
example, if you enter the command:

awk '{ print $1 }'

awk prints the first word of every line you type. When you type in data from the workstation, press ENTER
at the end of each line. To stop passing data to awk, type <EscChar-D> and press ENTER.

Using awk

172 z/VM: z/VM 7.2 OpenExtensions User's Guide

A command line may also specify several data files, as in:

awk -f progfile data1 data2 data3 ...

When awk has finished reading through the first data file data1, it goes on to data2, and so on.

Operators
awk recognizes these types of operators:

• Comparison operators
• Arithmetic operators
• Compound assignments
• Increment and decrement operators
• Matching operators
• Multiple-condition operators

Comparison Operators
The == notation is an example of a comparison. awk recognizes several types of comparisons:

Operator Meaning

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Arithmetic Operators
The following awk program uses simple arithmetic:

$3 > 10 { print $1, $2, $3–10 }

In the print statement:

$3–10

has the value of the third field in the record, minus 10. This is the value that print prints. If you apply
this program to the hobbies file, the output is:

Jim reading 5
Linda bridge 2
Katie jogging 4
Andrew wind surfing 10
Lori weight lifting 2

You could describe how the program works like this: If someone spends more than 10 hours on a hobby,
the program prints the person's name, the name of the hobby, and how many extra hours the person
spends on the hobby (that is, the number of hours more than 10).

An expression such as:

$3–10

Using awk

Appendix C. Using awk 173

is called an arithmetic expression. It performs an arithmetic operation and comes up with a result, which
is called the value of the expression.

awk recognizes the following arithmetic operations:

Operation Operator Example

Addition A + B 2+3 is 5

Subtraction A – B 7–3 is 4

Multiplication A * B 2*4 is 8

Division A / B 6/3 is 2

Negation – A – 9 is –9

Remainder A % B 7%3 is 1

Exponentiation A ‸ B 3‸2 is 9

The remainder operation is also known as the modulus, or integer remainder operation. The value of this
expression is the integer remainder, you get when you divide A by B. For example:

7 % 3

has a value of 1, because dividing 7 by 3 gives you 2 with a remainder of 1.

The value for the exponentiation operation:

A ‸ B

is the value of A raised to the exponent B. For example:

3 ‸ 2

has the value 9 (that is, 32).

Operation Ordering

Expressions can contain several operations, as in:

A+B*C

As is customary in mathematics, all multiplications and divisions and remainder operations are performed
before additions and subtractions. When handling the foregoing expression, awk performs B*C first and
then adds A. The value of:

2+3*4

is therefore 14 (3*4 first, then add 2). If you want a particular operation done first, enclose it in
parentheses, as in:

(A+B)*C

When evaluating this expression, awk performs the addition before the multiplication. Therefore:

(2+3)*4

is 20 (2+3 first, then multiply by 4). As an example of this, consider the program:

{ print $4/($3*52) }

$4 is the amount of money a person spent on a hobby in the last year. $3 is the average number of hours
a week the person spent on that hobby, so $3*52 is the number of hours in 52 weeks (that is, 1 year).
$4/($3*52) is therefore the amount of money that the person spent on the hobby per hour.

Using awk

174 z/VM: z/VM 7.2 OpenExtensions User's Guide

An order-of-operations table for awk can be found in awk in z/VM: OpenExtensions Commands Reference.

Compound Assignments
The following are the compound assignment operations of awk and their equivalents:

Compound Operation Equivalent

A += B A = A + B

A –= B A = A – B

A *= B A = A * B

A /= B A = A / B

A %= B A = A % B

A ‸= B A = A ‸ B

Increment and Decrement Operators
You can advance the value held in a variable, with:

count = count + 1

This is such a common operation that awk has a special operator for incrementing variables by 1.
++

The ++ operator increments the current value of the variable by 1. For example:

count++

adds 1 to the current value of count.
–␠–

The –␠– decrements (subtracts 1 from) the current value of a variable. For example, to subtract 1
from count, write:

count--

Matching Operators
If the pattern in an instruction is just a regular expression, awk looks for a matching string anywhere in a
record. Sometimes, however, you want to look for a matching string only in a particular field of a record.
In this case, you can use a matching expression.

There are two types of matching expressions:
string ~ /regular-expression/

Is true if string matches the given regular expression. (The ~ character is called "tilde.")
string !~ /regular-expression/

Is true if string does not match the given regular expression.

Multiple-Condition Operators
Operator

Meaning
&&

The double ampersand operator means AND. For example:

$3 > 10 && $4 > 100.00 { print $1, $2 }

prints the first and second fields of any record where $3 is greater than 10 and $4 is greater than
100.00.

Using awk

Appendix C. Using awk 175

||
The double "or-bar" operator means OR. For example:

$1 == "Linda" || $1 == "Lori"

prints any record with a first field that is either Linda or Lori.

Regular Expressions
A regular expression is a way of telling awk to select records that contain certain strings of characters. For
example, the instruction:

/ri/ { print }

tells awk to print all records that contain the string ri. Regular expressions are always enclosed in
slashes as shown in the instruction just discussed. For a discussion of regular expressions beyond their
usage in awk, see the appendix on regular expressions in z/VM: OpenExtensions Commands Reference.

The following characters have special meanings when you use them in regular expressions.
‸

Stands for the beginning of a field. For example:

$2 ~ /‸b/ { print }

Prints any record whose second field begins with b.
$

Stands for the end of a field. For example:

$2 ~ /g$/ { print }

prints any record with a second field that ends with g.
.

Matches any single character (except the newline). For example:

$2 ~ /i.g/ { print }

selects the records with fields containing ing, and also selects the records containing bridge (idg).
|

Means or. For example:

/Linda|Lori/

is a regular expression that matches either of the strings Linda or Lori.
*

Indicates zero or more repetitions of a character. For example:

/ab*c/

matches abc, abbc, abbbc, and so on. It also matches ac (zero repetitions of b). Because . matches
any character except the newline, .* matches an arbitrary string of zero or more characters. For
example:

$2 ~ /‸r.*g$/ { print }

prints any record with a second field that begins with r, ends in g, and has any set of characters
between (for example, reading and role playing).

Using awk

176 z/VM: z/VM 7.2 OpenExtensions User's Guide

+
Is similar to * , but stands for one or more repetitions of a character. For example:

/ab+c/

matches abc, abbc, and so on, but does not match ac.
\{m,n\}

Indicates m to n repetitions of a character (where m and n are both integers). For example:

/ab\{2,4\}c/

would match abbc, abbbc, and abbbbc, and nothing else.
?

Is similar to * , but stands for zero or one repetitions of a string. For example:

/ab?c/

matches ac and abc, but not abbc, and so on.
[X]

Matches any one of the set of characters X given inside the square brackets. For example:

$1 ~ /‸[LJ]/ { print }

prints any record whose first field begins with either L or J. As a special case: [:lower:] inside the
square brackets stands for any lowercase letter, [:upper:] inside the square brackets stands for
any uppercase letter, [:alpha:] inside the square brackets stands for any letter, and [:digit:]
inside the square brackets stands for any digit.

Thus:

/[[:digit:][:alpha:]]/

matches a digit or letter.

[‸X]
Matches any one character that is not in the set X. For example:

$1 ~ /‸[‸LJ]/ { print }

prints any record with a first field that does not begin with L or J.

$1 ~ /‸[‸[:digit:]]/ { print }

prints any record with a first field that does not begin with a digit.
(X)

Matches anything that the regular expression X does. You can use parentheses to control how other
special characters behave. For example, * usually applies to the single character immediately
preceding it. This means that:

/abc*d/

matches abd, abcd, abccd, and so on. However:

/a(bc)*d/

matches ad, abcd, abcbcd, abcbcbcd, and so on.

The characters with special meanings are:

‸ $. * + ? [] () |

These are known as metacharacters.

Using awk

Appendix C. Using awk 177

When a metacharacter appears in a regular expression, it usually has its special meaning. If you want to
use one of these characters literally (without its special meaning), put a backslash in front of the
character. For example:

/\$1/ { print }

prints all records that contain a dollar sign $ followed by a 1. If you simply entered:

/$1/ { print }

awk would search for records where the end of the record was followed by a 1 — which is impossible.

Because the backslash has this special meaning, \ is also considered a metacharacter. If you want to
create a regular expression that matches a backslash, you must therefore use two backslashes \\.

Pattern Ranges
A instruction of the form:

pattern1, pattern2 { action }

performs the given action on every line, starting at an occurrence of pattern1 and ending at the next
occurrence of pattern2 (inclusive). For example, the instruction

/Jim/, /Linda/ { print $2 }

prints the second field of all lines between an occurrence of Jim and an occurrence of Linda. Using the
hobbies file as our data file, the output is:

reading
bridge
role playing
bridge

When awk finds a record matching pattern2, it begins to look for a line matching pattern1 again. Thus,
with this instruction:

/reading/, /role/

the output is

Jim reading 15 100.00
Jim bridge 4 10.00
Jim role playing 5 70.00
Katie reading 10 60.00
John role playing 8 100.00

awk prints the first range of records from reading to role and then starts looking for reading again.

awk starts performing the instruction's action as soon as there is a record that matches pattern1. awk
does not check to make sure that there is a line matching pattern2 in the rest of the file. This means that:

/Lori/, /Jim/ { print $2 }

begins printing at the first record that contains Lori, and keeps going until it reaches the end of the file.
No Jim is found.

Using Special Patterns
BEGIN and END are two special patterns.

Using awk

178 z/VM: z/VM 7.2 OpenExtensions User's Guide

BEGIN
When an instruction has BEGIN as its pattern, awk performs the associated action before looking at
any of the records in the data file.

END
When an instruction has END as its pattern, awk performs the associated action after looking at all
records in the data files specified on the command line.

Consider the action:

count = count + 1

awk first finds the value of:

count + 1

and then assigns this value to count. Thus this action increases the value of count by 1. In a program, you
can use this sort of action to count how many people have jogging as a hobby:

BEGIN { count = 0 }
$2 == "jogging" { count = count + 1 }
END { printf "%d people like jogging.\n", count }

Let's look at this program line by line.

BEGIN { count = 0 }

In this example, awk begins by assigning the value 0 to count:

$2 == "jogging" { count = count + 1 }

adds 1 to count every time awk finds a record with jogging in the second field.

END { printf "%d people like jogging.\n", count }

When awk has looked at all the records, the printf action prints the count of people who jog. The output
from the program is:

3 people like jogging.

Notice how the value of count was printed in place of the %d placeholder. For more information about
using a placeholder, see “Placeholders” on page 187.

Built-in Variables
awk has a number of built-in variables that you can use in your programs. You do not have to assign
values to these variables; awk automatically assigns the values for you.

Built-in Numeric Variables
The following list describes some of the important numeric built-in variables:
NR

Contains the number of records that have been read so far. When awk is looking at the first record, NR
has the value 1; when awk is looking at the second record, NR has the value 2; and so on. In a BEGIN
instruction, NR has the value 0. In an END instruction, NR contains the total number of records that
were read. This instruction:

END { print NR }

prints the total number of data records read by the awk program.

Using awk

Appendix C. Using awk 179

FNR
Is like NR, but it counts the number of records that have been read so far from the current file. When
you give several data files on the awk command line, awk sets FNR back to 1 when it begins reading
each new file. Thus, a command such as:

{ printf "%d:%s\n",FNR,$0 }

prints the line number in the current file, followed by a colon, followed by the contents of the current
line.

NF
Gives the number of fields in the current record. For the hobbies file, NF is 4 for each line, because
there are four fields in each record. In an arbitrary text file, NF gives the number of words on the
current line in the file; by default, awk assumes that blanks separate the fields of a record, so it
considers each word on a line to be a separate field. Therefore, the program:

{ count = count + NF }
END { print count }

prints the total number of words in the file.
Using these built-in variables, you can create more ambitious awk commands.

awk 'NF == 1 {print}' file

prints those records with precisely one field in them. There is no –F option specified for this command, so
awk assumes that blanks or tab characters separate the fields. The foregoing command therefore prints
all lines that contain only one word (that is, one field).

awk '{print FNR ": " $0}' file

$0 stands for the entire record. The foregoing command displays the contents of file, putting a line
number and a colon before each line.

awk '/abc/ {print FILE NAME ": " $0}' *.bas

examines all files that have the .bas extension in the working directory. It prints every line that contains
the string abc and also displays the file name, so you know which file contains which lines.

Built-in String Variables
awk also provides a number of built-in string variables:
FILENAME

Contains the name of the current input file. For example, when running programs against the
hobbies file, the value of FILENAME would be hobbies (if that is the file you are using). If the input is
coming from the awk standard input, the value is -.

FS
Is the field separator string, giving the character that separates fields in the current file. The default
value for FS is "" (a single blank), which as a special case matches both blank and tab. However, if the
command line contains an –F option specifying a different field separator, FS is a string containing the
given separator character. As well, a program may also assign values to FS to indicate new field
separator characters. For example, you could create a data file with a first line that provides the
character used to separate fields in the records in the rest of the file. An awk program could then
contain the instruction:

FNR == 1 { FS = $0 }

This says that the field separator string FS should be assigned the contents of the first record in the
current data file. The character in this line is then taken to be the field separator for the rest of the file
(unless FS changes value again). Any FS value of more than one character is used as a regular
expression. For details, see the "Input" section of the awk command description in z/VM:
OpenExtensions Commands Reference.

Using awk

180 z/VM: z/VM 7.2 OpenExtensions User's Guide

RS
Is the input record separator. Just as FS indicates the character that separates fields within records,
RS indicates the character that separates one record from another. By default, RS contains a newline
character, which means that input records are separated by newlines. However, you can assign a
different character to RS; for example, with:

RS = ";"

input records are separated by semicolons. This lets you have several records on a single line, or a
single record that extends over several lines. Records are separated by a semicolon, not a <newline>
character. As an important special case:

RS = ""

separates records by empty lines.
OFS

Gives the output field separator string. When you use the print action to print several values, as in:

{ print A, B, C }

awk prints the output field separator string between each of the values. By default, OFS contains a
single blank character, which is why output values are separated by a single blank. However, if you
make the assignment:

OFS = " : "

the output values are separated by the given string. You can also use OFS to reconstruct the $0 field
during field assignment.

ORS
Gives the output record separator. When you use the print action to print records, awk prints the
output record separator at the end of each record. By default, ORS is the newline character, which is
why print prints a new output line each time it is called. However, you can use a different separator
string by assigning the string to ORS.

OFMT
Is the default output format for numbers when they are displayed by print. This is a format string like
the one used by printf. By default, it is %.6g, indicating that numbers are to be displayed with a
maximum of six digits after the decimal point. By changing OFMT, you can obtain more or less
displayed precision.

CONVFMT
Is the default format which awk uses when converting numbers into strings internally. This differs
from the OFMT variable, which is used only when displaying numbers. The internal conversion of a
number to a string occurs when you perform concatenation, indexing, and some comparison
operations. awk converts floating-point numbers (that is, numbers that are not integers) to strings as
if you had specified the operation:

sprintf(CONVFMT, number ...)

By default, the value of CONVFMT is %.6g.

Note: CONVFMT is a POSIX extension not found in traditional implementations of awk.

Statements and Loops
awk supports the following types of statements and loops:

• if statement
• while loop
• for loop

Using awk

Appendix C. Using awk 181

• next statement
• exit statement

The if Statement
An if statement is an action of the form:

if (expression) statement1 else
statement2

Typically, the expression in the if statement has a true-or-false value. If the value is true, statement1 is
performed; otherwise, statement2 is performed. The else statement2 part is optional.

The while Loop
A while loop repeats one or more other instructions as long as a given condition holds true. The format
of the loop is:

while (expression) statement

where the statement can be a single statement or a compound statement.

The for Loop
The statement:

for
(expression1;expression2;expression3)
statement

is equivalent to the following instruction sequence:

expression1
while (expression2) {
 statement
 expression3
}

The next Statement
The next instruction skips immediately to the next record in the data file.

The exit Statement
The exit statement makes an awk program behave as if it had just reached the end of data input. No
further input is read. If there is an END action, awk processes it before the program ends. As with next,
exit is often used when input data is found to be incorrect.

If exit appears inside the END action, the program ends immediately.

Functions
awk supports:

• Arithmetic functions
• String manipulation functions
• User-defined functions
• Passing an array to a function
• The getline function

Using awk

182 z/VM: z/VM 7.2 OpenExtensions User's Guide

Arithmetic Functions
awk recognizes the most common mathematical functions, as shown in the following table.

Function Result

sqrt(x) Square root of x

sin(x) Sine of x, where x is in radians

cos(x) Cosine of x, where x is in radians

atan2(y,x) Arctangent of y/x in range -π to π

log(x) Natural logarithm of x

exp(x) The constant e to the power x

int(x) Integer part of x

rand() Random number between 0 and 1

srand(x) Sets x as seed for rand()

Several of these functions may require more explanation.

The int function takes a floating-point number as an operand and returns an integer. The integer is just
the floating-point number, without its fractional part.

Every call to rand returns a new random number between 0 and 1. In this way, you can get a sequence of
random numbers. You can use srand to set the starting point, or "seed" for a random number sequence.
If you set the seed to a particular value, you always get the same sequence of numbers from rand. This is
useful if you want a program to use rand but obtain uniform results every time the program runs.

String Manipulation Functions
awk has a number of functions that perform string operations:
length

Returns an integer that is the length of the current record (that is, the number of characters in the
record, without the newline on the end). For example, the following program calculates the total
number of characters in a file (except for newline characters):

 { sum = sum + length }
END { print sum }

length(s)
Returns an integer that is the length of the string s. For example, the following program prints the
length of the first field in each record of the file:

{ print length($1) }

The function call length($0) is equivalent to just length.
gsub(regexp,replacement)

Puts the replacement string replacement in place of every string matching the regular expression
regexp in the current record. For example, the program:

{
 gsub(/John/,"Jonathan")
 print
}

checks every record in the data file for the regular expression John, replaces matching strings with
Jonathan, and prints the resulting record. As a result, the program's output is exactly like its input,
except that every occurrence of John is changed to Jonathan. This form of the gsub function returns
an integer telling how many substitutions were made in the current record. This is 0 if the record has
no strings that match regexp.

Using awk

Appendix C. Using awk 183

sub(regexp,replacement)
Is similar to gsub except that it replaces only the first occurrence of a string matching regexp in the
current record.

gsub(regexp,replacement,string_var)
Puts the replacement string replacement in place of every string matching the regular expression
regexp in the string string_var. For example, the program:

{
 gsub(/John/,"Jonathan",$1)
 print
}

is similar to the previous program, but the replacement is made only in the first field of each record.
This form of the gsub function returns an integer telling how many substitutions were made in
string_var.

sub(regexp,replacement,string_var)
Is similar to the previous version of gsub except that it only replaces the first occurrence of a string
matching regexp in the string string_var.

Note: You must use four backslashes to embed one literal backslash in a gsub() or sub()
substitution string. For example,

gsub(/backslash/,"\\\\")

replaces all occurrences of the word backslash with the single character \.

index(string,substring)
Searches the given string for the appearance of the given substring. If it cannot find substring, index
returns 0; otherwise, index returns the number (origin 1) of the character in string where substring
begins. For example:

index("abcd","cd")

returns the integer 3 because cd is found beginning at the third character of abcd.
match(string,regexp)

Determines if string contains a substring that matches the regular expression (pattern) regexp. If so,
the function returns an index giving the position of the matching substring within string; if not, match
returns 0. match also sets a variable named RSTART to the index where the matching string starts,
and a variable named RLENGTH to the length of the matching string.

substr(string,pos)
Returns the last part of string beginning at a particular character position. The operand pos is an
integer, giving the number of a character. Numbering begins at 1. For example, the value of:

substr("abcd",3)

is the string cd.
substr(string,pos,length)

Returns the part of string that begins at the character position given by pos and has the length given
by length. For example, the value of:

substr("abcdefg",3,2)

is cd (a string of length 2 beginning at position 3).
sprintf(format,value1,value2,...)

Is based on the printf action. The value of sprintf is the string that would be printed out by the
action

printf(format,value1,value2,...)

For example:

Using awk

184 z/VM: z/VM 7.2 OpenExtensions User's Guide

str = sprintf("%d %d!!!\n",2,3)

assigns the string "2 3!!!\n" to the string variable str.
tolower(string)

Returns the value of string, but with all the letters in lowercase. (This function is an extension to
standard awk.)

toupper(string)
Returns the value of string, but with all the letters in uppercase. (This function is an extension to
standard awk.)

ord(string)
Converts the first character of string into a number. This number gives the decimal value of the
character in the character set used on the system. (This function is an extension to standard awk.)

User-Defined Functions
In an awk program, a function definition looks like this:

function name(operand-list) {
 statements
}

The operand-list is a list of one or more names (separated by commas) that represent operand values
passed to the function. When an operand name is used in the statements of a function, it is replaced by a
copy of the corresponding operand value.

For example, the following is a simple function that takes a single numeric operand N and returns a
random integer between 1 and N (inclusive):

function random(N) {
 return (int(N * rand() + 1))
}

Passing an Array to a Function
When an array is passed as an operand to a function, it is passed by reference. This means that the
function works with the actual array, not with a copy. Anything that the function does to the array has an
effect on the original array. split is a built-in function that takes an array as an operand.
split(string,array)

split breaks up string into fields, and assigns each of the fields to an element of array. The first field
is assigned to array[1], the next to array[2], and so on. Fields are assumed to be separated with the
field separator string FS. If you want to use a different field separator string, you can use:

split(string,array,fsstring)

where fsstring is the field separator string you want to use instead of FS. The result of split is the
number of fields that string contained.

Note: split actually changes the elements of array. When an array is passed to a function, the function
may change the array elements.

The Getline Function
The getline function reads input from the current data file or from a different file.

Running System Commands
You can run commands with the system function:

system("command line")

Using awk

Appendix C. Using awk 185

runs the given command line: For example:

system("cd XYZ")

runs a cd command to change the working directory.

Controlling awk Output
By default, awk output is written to your workstation screen. You can save the output of an awk program
in a file by using output redirection. To do this, put:

>filename

on the end of any awk command line. For example:

awk –f progfile datafile >outfile

writes all the output from the awk program to a file named outfile. In this case, the output does not
appear on the workstation screen.

Formatting the Output
The output of the program:

$1 == "Jim" { print "$", $4/52 }

is:

$ 1.92308
$ 0.192308
$ 1.34615

This output shows the amount of money per week that Jim spent on his hobbies. However, money
amounts usually have only two digits after the decimal point. How can you change the program to make
the money amounts appear more usual? The answer is to use the printf action instead of print. This
lets you specify the format in which awk prints the output.

A printf action looks like this:

{ printf format-string, value, value, ... }

The format-string indicates the output format. The values are the data to be printed.

A format string contains two kinds of items:

• Usual characters, which are just printed out as is
• Placeholders, which awk replaces with values given later in the printf action

As an example, try running the following program on the hobbies file:

$2 == "bridge" { printf "%5s plays bridge\n", $1 }

awk prints:

 Jim plays bridge
Linda plays bridge
 Lori plays bridge

The format string:

"%5s plays bridge\n"

has one placeholder: %5s. When printf prints its output, replacing the placeholder with the value $1,
which is the first field of the record being examined. The rest of the format string is just printed out as is.

Using awk

186 z/VM: z/VM 7.2 OpenExtensions User's Guide

Note: The format string ends in \n; for more information, see “Escape Sequences” on page 188.

Placeholders
The form of the placeholder %5s tells awk how to print the associated value. All placeholders begin with %
and end in a letter. The following are some of the most common letters used in placeholders:
c

If the associated value is an integer, printf prints the character in the native character set that has
that integer value; if the associated value is a string, printf prints the first character of the string.

d
An integer in decimal form (base 10).

e
A floating-point number in scientific notation, as in -d.ddddddE+dd.

f
A floating-point number in conventional form, as in -ddd.dddddd.

g
A floating-point number in either e or f form, whichever is shorter; also, nonsignificant zeros are not
printed.

o
An unsigned integer in octal form (base 8).

s
A string.

x
An unsigned integer in hexadecimal form (base 16).

For example, the format string:

"%s %d\n"

contains two placeholders: %s represents a string, and %d represents a decimal integer.

Between the % and the letter at the end of the placeholder, you can put additional information. If you put
an integer, as in %5s, the number is used as a width. awk prints the corresponding value using (at least)
the given number of characters. Therefore in:

$2 == "bridge" { printf "%5s plays bridge\n", $1 }

the value of the string $1 replaces the placeholder %5s and is always printed using five characters. The
output is therefore:

 Jim plays bridge
Linda plays bridge
 Lori plays bridge

as shown before. If you just write:

$2 == "bridge" { printf "%s plays bridge\n", $1 }

without the 5, the output is:

Jim plays bridge
Linda plays bridge
Lori plays bridge

If no width is given, awk prints values using the smallest number of characters possible.

awk also lets you put a minus sign (–) in front of the number in the width position. The amount of output
space is the same, but the information is left-justified. For example:

$2 == "bridge" { printf "%–5s plays bridge\n", $1 }

Using awk

Appendix C. Using awk 187

prints:

Jim plays bridge
Linda plays bridge
Lori plays bridge

A placeholder for a floating-point number can also contain a precision. You can write this as a dot
(decimal point) followed by an integer. Specifying a precision tells printf how many digits to print after
the decimal point in a floating-point number. For example, in:

$1 == "John" { printf "$%.2f on %s\n", $4 * 1.05, $2 }

the placeholder %.2f indicates that printf is to print all floating-point numbers with two digits after the
decimal point. The output of this program is:

$105.00 on role playing
$31.50 on jogging

For good-looking output, you might specify both a width and a precision. For example, the program:

$1 == "John" { printf "$%6.2f on %s\n", $4 * 1.05, $2 }

prints the following:

$105.00 on role playing
$ 31.50 on jogging

%6.2f indicates that the corresponding floating-point value should be printed with a width of six
characters, with two characters after the decimal point.

Here are a few more awk programs that work on the hobbies file. Predict what each prints and run them
to see if your prediction is right:

(a) { printf "%6s %s\n", $1, $2 }
(b) { printf "%20s: %2d hours/week\n", $2, $3 }
(c) $1=="Katie" { printf "%20s: $%6.2f\n",$2,$4 }

Escape Sequences
All the format strings shown so far have ended in \n. This kind of construct is called an escape sequence.
All escape sequences are made from a backslash character (\) followed by one to three other characters.

Escape sequences are used inside strings, not just those for printf, to represent special characters. In
particular, the \n escape sequence represents the newline character. A \n in a printf format string tells
awk to start printing output at the beginning of a newline.

The following list shows escape sequences that can be used in awk strings:

Escape ASCII Character

\a Audible bell

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo ASCII character, octal ooo

\xdd Hexadecimal value dd

Using awk

188 z/VM: z/VM 7.2 OpenExtensions User's Guide

Escape ASCII Character

\" Quotation Marks

\c Any other character c

 PI end

Using awk

Appendix C. Using awk 189

Using awk

190 z/VM: z/VM 7.2 OpenExtensions User's Guide

Appendix D. The Format of Archive Files: cpio and tar

 PI

You can use the cpio or tar command to back up or restore files. The cpio command reads and writes
either a compact binary format header or an ASCII format header. The tar command reads and writes
headers in either the original TAR format from UNIX systems or the USTAR format defined by the POSIX
1003.1 standard.

The pax command reads and writes headers in any of the cpio or tar formats.

This appendix describes the formats of the cpio and tar archive files.

cpio Format
A cpio archive consists of one or more concatenated member files. Each member file contains a header
optionally followed by file contents as indicated in the header. The end of the archive is indicated by
another header describing a file named TRAILER!!! which is empty.

There are two types of cpio archives, differing only in the style of the header:

• ASCII archives have totally printable header information; thus, if the files being archived are also ASCII
files, the whole archive is ASCII.

• By default, cpio writes archives with binary headers; however, binary archive files cannot usually be
ported to other operating systems, so it is recommended that you not use these.

The information in an ASCII archive header is stored in fixed-width, octal (base 8) numbers zero-padded
on the left. The following table gives the order and field width for the information in the ASCII header:

Table 5. cpio Archive File: ASCII Header

Field Width Field Name Meaning

6 magic Magic number 070707

6 dev Device where file resides

6 ino I-number of file

6 mode File mode

6 uid Owner user ID

6 gid Owner group ID

6 nlink Number of links to file

6 rdev Device major/minor for special file

11 mtime Modify time of file

6 namesize Length of file name

11 filesize Length of file

After the header information, namesize bytes of path name is stored. namesize includes the null byte of
the end of the path name. After this, filesize bytes of the file contents are recorded.

Binary headers contain the same information in 2-byte (short) and 4-byte (long) integers as follows:

Archive Files: cpio and tar

© Copyright IBM Corp. 1993, 2020 191

Table 6. cpio Archive File: Binary Header

Bytes Field Name

2 magic

2 dev

2 ino

2 mode

2 uid

2 gid

2 nlink

2 rdev

4 mtime

2 namesize

2 reserved

4 filesize

After the header information comes the file name, with namesize rounded up to the nearest 2-byte
boundary. Then the file contents appear as in the ASCII archive. The byte ordering of the 2- and 4-byte
integers in the binary format is machine-dependent and thus portability of this format is not easily
guaranteed.

Compressed cpio archives are exactly equivalent to the corresponding archive being passed to a 14-bit
compress utility.

tar Format
The OpenExtensions tar utility supports both the older UNIX-compatible tar formats and the new
USTAR format. The USTAR format allows more information to be stored and supports longer path names.

A tar archive, in either format, consists of one or more blocks, which represents member files. Each
block is 512 bytes long; you can use the -b option with tar to indicate how many of these blocks are read
or written (or both) at the same time.

Each member file consists of a header block, followed by zero or more blocks containing the file contents.
The end of the archive is indicated by two blocks filled with binary zeros. Unused space in the header is
left as binary zeros.

The header information in a block is stored in a printable ASCII form, so that tar archives are easily
ported to different environments. If the contents of the files on the archive are all ASCII, the entire
archive is ASCII.

Table 7 on page 192 shows the UNIX format of the header block for a file.

Table 7. tar Archive File: UNIX-Compatible Format

Field Width Field Name Meaning

100 name Name of file

8 mode File mode

8 uid Owner user ID

8 gid Owner group ID

Archive Files: cpio and tar

192 z/VM: z/VM 7.2 OpenExtensions User's Guide

Table 7. tar Archive File: UNIX-Compatible Format (continued)

Field Width Field Name Meaning

12 size Length of file in bytes

12 mtime Modify time of file

8 chksum Checksum for header

1 link Indicator for links

100 linkname Name of linked file

• A directory is indicated by a trailing ⁄ (slash) in its name.
• The link field is:

– 1 for a linked file
– 2 for a symbolic link
– 0 otherwise.

tar determines that the USTAR format is being used by the presence of the null-ended string ustar in
the magic field. All fields before the magic field correspond to those of the UNIX format, except that
typeflag replaces the link field.

Table 8. tar Archive File: USTAR Format

Field Width Field Name Meaning

100 name Name of file

8 mode File mode

8 uid Owner user ID

8 gid Owner group ID

12 size Length of file in bytes

12 mtime Modify time of file

8 chksum Checksum for header

1 typeflag Type of file

100 linkname Name of linked file

6 magic USTAR indicator

2 version USTAR version

32 uname Owner user name

32 gname Owner group name

8 devmajor Device major number

8 devminor Device minor number

155 prefix Prefix for file name

Description of the Header Fields
In the headers:

• The name field contains the name of the archived file. On USTAR format archives, the value of the prefix
field, if non-null, is prefix to the name field to allow names longer than 100 characters.

Archive Files: cpio and tar

Appendix D. The Format of Archive Files: cpio and tar 193

• The magic, uname, and gname fields are null-ended character strings
• The name, linkname, and prefix fields are null-ended unless the full field stores a name (that is, the last

character is not null).
• All other fields are zero-filled octal numbers, in ASCII. Trailing nulls are present for these numbers,

except for the size, mtime, and version fields.
• prefix is null unless the file name exceeds 100 characters.
• The size field is zero if the header describes a link.
• The chksum field is a checksum of all the bytes in the header, assuming that the chksum field itself is all

blanks.
• For USTAR, the typeflag field is a compatible extension of the link field of the older tar format. The

following values are recognized:
Flag

File Type
0 or null

Regular file
1

Link to another file already archived
2

Symbolic link
3

Character special file
4

Block special file (not supported for OpenExtensions)
5

Directory
6

FIFO special file
7

Reserved
F

CMSDATA external link
G

CMSEXEC external link
H

MOUNT external link
A–Z

Available for custom usage (except for F, G and H that are used by OpenExtensions).
• In USTAR format, the uname and gname fields contain the name of the owner and group of the file,

respectively.

Compressed tar archives are exactly equivalent to the corresponding archive being passed to a 14-bit
compress utility.

 PI■end

Archive Files: cpio and tar

194 z/VM: z/VM 7.2 OpenExtensions User's Guide

Appendix E. Code Pages and the POSIX Portable
Character Set

For purposes of comparison, this appendix includes:

• Latin 1/Open System Interconnection Code Page 01047 (IBM-1047)
• POSIX Portable Character Set
• U.S. APL Code Page 00293

Code Pages, POSIX Portable Character Set

© Copyright IBM Corp. 1993, 2020 195

Latin 1/Open System Interconnection Code Page 01047 (IBM-1047)

Figure 12. Latin 1/Open System Interconnection Code Page 01047 (IBM-1047)

Code Pages, POSIX Portable Character Set

196 z/VM: z/VM 7.2 OpenExtensions User's Guide

POSIX Portable Character Set 00103

Figure 13. POSIX Portable Character Set 00103

Code Pages, POSIX Portable Character Set

Appendix E. Code Pages and the POSIX Portable Character Set 197

U.S. APL Code Page 00293

Figure 14. U.S. APL Code Page 00293

Code Pages, POSIX Portable Character Set

198 z/VM: z/VM 7.2 OpenExtensions User's Guide

Appendix F. Escape Sequences

You can use escape sequences to type:

• Portable characters not included on your keyboard; see “Escape Sequences for Portable Characters Not
on Your Keyboard” on page 199.

• Control characters that are normally available on ASCII workstations, but not EBCDIC ones; see
“Escape Sequences for Control Characters” on page 199.

Escape Sequences for Portable Characters Not on Your Keyboard
If you do not have keys on your keyboard for the following portable characters, you can use an escape
sequence to obtain them. In Table 9 on page 199, the default escape character, the cent sign (¢), is used.

Table 9. Portable Characters: Escape Sequences

Portable Character ASCII Control Sequence OpenExtensions
Escape Sequence

<NUL> control-@ ¢@ or ¢0

<alert> control-G ¢g or ¢G

<backspace> control-H ¢h or ¢H

<tab> control-I ¢i or ¢I

<newline> control-J ¢j or ¢J

<vertical-tab> control-K ¢k or ¢K

<form-feed> control-L ¢l or ¢L

<carriage-return> control-M ¢m or ¢M

<left-square-bracket> left-square-bracket ¢(or ¢{

<right-square-bracket> right-square-bracket ¢) or ¢}

<tab> character:

When writing makefiles for the make utility, you need to use a <tab> character. If you are using a shell
editor, you can type a <tab> character as an <EscChar-I> sequence. After you press ENTER, the tab
displays as blank space.

If you are using the XEDIT editor, you cannot type a <tab> character (XEDIT handles only displayable
characters). See “Typing Tabs using XEDIT” on page 132 for information on how to enter a <tab>
character when using the XEDIT.

Escape Sequences for Control Characters
To obtain the following control characters, you must use an escape sequence. In Table 10 on page 200,
the default escape character, the cent sign (¢), is used.

Escape Sequences

© Copyright IBM Corp. 1993, 2020 199

Table 10. Control Characters: Escape Sequences

Control Character ASCII Control Sequence OpenExtensions Escape Sequence

<ACK> control-F ¢f or ¢F

<CAN> control-X ¢x or ¢X

<DC1> control-Q ¢q or ¢Q

<DC2> control-R ¢r or ¢R

<DC3> control-S ¢s or ¢S

<DC4> control-T ¢t or ¢T

 control-? ¢?, ¢7, or ¢#

<DLE> control-P ¢p or ¢P

 control-Y ¢y or ¢Y

<ENQ> control-E ¢e or ¢E

<EOT> control-D ¢d or ¢D

<ESC> control-left-square-bracket ¢2 or ¢-left-square-bracket

<ETB> control-W ¢w or ¢W

<ETX> control-C ¢c or ¢C

<IS1> control-_ ¢6 or ¢_

<IS2> control-circumflex ¢5 or ¢¬

<IS3> control-right-square-bracket ¢4 or ¢-right-square-bracket

<IS4> control-backslash ¢3 or ¢backslash

<NAK> control-U ¢u or ¢U

<SI> control-O ¢o or ¢O

<SO> control-N ¢n or ¢N

<SOH> control-A ¢a or ¢A

<STX> control-B ¢b or ¢B

<SUB> control-Z ¢z or ¢Z

<SYN> control-V ¢v or ¢V

Escape Sequences

200 z/VM: z/VM 7.2 OpenExtensions User's Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1993, 2020 201

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM
shall not be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication primarily documents information that is NOT intended to be used as Programming
Interfaces of z/VM.

This publication also documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of z/VM. This information is identified where it occurs, either by an
introductory statement to a chapter or section or by the following marking:

 PI

<...Programming Interface information...>

 PI end

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at IBM
copyright and trademark information - United States (www.ibm.com/legal/us/en/copytrade.shtml).

Adobe is either a registered trademark or a trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

202 z/VM: z/VM 7.2 OpenExtensions User's Guide

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

Notices 203

• IBM Privacy Statement at http://www.ibm.com/privacy/us/en/
• IBM Online Privacy Statement at http://www.ibm.com/privacy/details/us/en/ in the section entitled

"Cookies, Web Beacons and Other Technologies"

Acknowledgments
InterOpen/POSIX Shell and Utilities is a source code product providing POSIX.2 (Shell and Utilities)
functions to the OpenExtensions services offered with VM. InterOpen/POSIX Shell and Utilities is
developed and licensed by Mortice Kern Systems (MKS) Inc. of Waterloo, Ontario, Canada.

Information in this document has been adapted from the InterOpen/POSIX Shell and Utilities User Manual,
supplied by Mortice Kern Systems (MKS) Inc. for use by licensees of their InterOpen/POSIX Shell and
Utilities source code product.

© Copyright 1985, 1993 Mortice Kern Systems, Inc.
© Copyright 1989 Software Development Group, University of Waterloo.

204 z/VM: z/VM 7.2 OpenExtensions User's Guide

https://www.ibm.com/privacy/us/en/
https://www.ibm.com/privacy/details/us/en/

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Knowledge Center - z/VM (www.ibm.com/
support/knowledgecenter/SSB27U).

z/VM Base Library

Overview

• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service

• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration

• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/OS and z/VM: Hardware Configuration Manager User's Guide (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf), SC34-2670

Customization and Tuning

• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

© Copyright IBM Corp. 1993, 2020 205

http://www.ibm.com/support/knowledgecenter/SSB27U
http://www.ibm.com/support/knowledgecenter/SSB27U
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf

Operation and Use

• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268
• z/VM: System Operation, SC24-6326
• z/VM: TCP/IP User's Guide, SC24-6333
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming

• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• CPI Communications Reference, SC26-4399
• Common Programming Interface Resource Recovery Reference, SC31-6821
• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa760169/$file/glpa300_v2r4.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf), SA38-0683

206 z/VM: z/VM 7.2 OpenExtensions User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa760169/$file/glpa300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa760169/$file/glpa300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf

• z/OS: Language Environment Runtime Messages (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf), SA38-0684

• z/OS: MVS Program Management Advanced Facilities (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf), SA23-1393

Diagnosis

• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: VM Dump Tool, GC24-6335
• z/OS and z/VM: Hardware Configuration Definition Messages (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf), SC34-2668

z/VM Facilities and Features

Data Facility Storage Management Subsystem for VM

• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277
• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM

• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter

• Open Systems Adapter-Express Customer's Guide and Reference (www.ibm.com/support/pages/open-
systems-adapter-express-customers-guide-and-reference-0), SA22-7935

• Open Systems Adapter-Express Integrated Console Controller User's Guide (www.ibm.com/support/
pages/node/6019810), SC27-9003

• Open Systems Adapter-Express Integrated Console Controller 3215 Support (www.ibm.com/support/
knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247

• Open Systems Adapter/Support Facility on the Hardware Management Console (www.ibm.com/
support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Bibliography 207

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf
https://www.ibm.com/support/pages/open-systems-adapter-express-customers-guide-and-reference-0
https://www.ibm.com/support/pages/open-systems-adapter-express-customers-guide-and-reference-0
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

Performance Toolkit for z/VM

• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM

• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM

• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320
• z/OS: Network Job Entry (NJE) Formats and Protocols (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf), SA32-0988

Prerequisite Products

Device Support Facilities

• Device Support Facilities (ICKDSF): User's Guide and Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf), GC35-0033

Environmental Record Editing and Printing Program

• Environmental Record Editing and Printing Program (EREP): Reference (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4gc350152/$file/ifc2000_v2r4.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf), GC35-0151

Additional Publications
XL C/C++ for z/VM: User's Guide, SC09-7625
, SC09-4765

208 z/VM: z/VM 7.2 OpenExtensions User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc2000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc2000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf

Index

Special Characters
_ variable 25
; (semicolon) 37
? 42
. (dot) 90
.. (dot dot) 90
.profile file 23
' ' escape character 42
" " escape character 42
* 42
/dev/null 34
/etc/profile 23
\ escape character 41
&& 38
#! 13
ˋ ˋ syntax 38
< 33
> 33
> prompt 42
>> 33
|| 38
$– 61
$? 61
$() syntax 38
$@ 60
$* 61
$# 61
$N construct 56

Numerics
2> 33

A
action

print 171
printf 186

address
socket 84

address alias 76
alias

address 76
defining 34
mailx 76
redefining 35
tracking 36
turning off 37

alias shell command 34
APL

code page 198
application, hung

getting rid of 19
applications

without the Shell 73
archive file

archive file (continued)
code page conversion 118
compressed

creating 113
displaying the contents 114
restoring selected files 114

copying into a file system 150
cpio format 191
installing into the file system 149
restoring component archive files 118
tar format 192
transferring to a record file 150
transferring to tape at host 151

arithmetic
calculation 53
function 183
operator 173

array
used in awk 185

authorizations for POSIX query and set functions 4
awk utility

blanks and horizontal tabs 169
command line 171
compound assignment 175
controlling output 186
data files 167
escape sequences 188
formatting output 186
functions 182
output 171, 186
print action 171
printf action 186
program shape 168
running a program 171
running system commands 185

B
background job

canceling 70
moving to foreground 68
suspended 68

backslash (\) character 41
backup

file
code page conversion 118
cpio 113
pax 116
tar 114

BEGIN pattern 178
BFS

copying
into a CMS native record file 147

BFS (Byte File System)
comparison with CMS files 82
copying files 145
copying within BFS 148

Index 209

BFS (Byte File System) (continued)
different file types 84
effective group ID 129
effective user ID 129
file spaces, creating 6
files 81
hierarchy 81
line orientation 81
mountable 83
path name 84

bit
bucket 34
SETGID 129
SETUID 129
sticky 124

blanks, trailing 132
bracket character

code page conversion 20
built-in variable

numeric 179
string 180

byte-range locking 112

C
c89 shell command 100
calling programs

from CMS 73
from the Shell 73

cat shell command 111
cd shell command 90
CDPATH variable 25
character set

portable file name 99
POSIX portable 197

character special file 84
chgrp shell command 128
child process 67
chmod shell command 122
chown shell command 128
cksum shell command 46
CMS

case-sensitive processing 100
CMS (Conversational Monitor System)

commands
printing files 144

CMS file
erasing 149

CMS HELP command 47
CMS native record file

copying
into a BFS file 145

code page
conversion

doublebyte data 21
pax command 112, 118
square brackets 20
VM—OpenExtensions shell 19

IBM-1027 19
IBM-1047 19, 196
IBM-939 19
U.S. APL (00293) 198

COLUMNS variable 25
combined commands

combined commands (continued)
; 37
&& 38
|| 38
filter 38
pipe 38

command
CMS

ERASE 149
HELP 47
MSG 75
NOTE 75
OPENVM CREATE DIRECTORY 91
OPENVM GETBFS 147
OPENVM PUTBFS 146
OPENVM RUN 73
OPENVM SET DIRECTORY 73
OPENVM SET MASK 121
TELL 75

combining more than one 37
delaying execution 71
file system

CMS 87
shell 86

flag 11
history

function keys 44
r command 44

interrupting 32
operand 11, 31, 32
option 11, 31
running after exiting 71
shell

alias 34
awk 167
c89 100
cat 111
cd 90
chgrp 128
chmod 122
chown 128
cksum 46
cp 148
cpio 113
cxx 100
diff 96, 105
echo 25
exec 34
export 54
find 39, 46, 96
grep 35, 109
head 111
history 44
iconv 21
jobs 69
kill 70
ln 101
lp 144
ls 95, 126
mailx 75
mkdir 92
mv 104
nohup 71
od 34

210 z/VM: z/VM 7.2 OpenExtensions User's Guide

command (continued)
shell (continued)

pax 116
pr 111, 143
ps 69
pwd 89
r 44
rm 36, 94, 100
rmdir 94
set 25, 29
sort 106
stty 68
su 11
tail 111
tar 114
test 61
time 47
typeset 55
umask 127
wait 71
wc 109
whence 29

substitution 38
summary table 161
usage 32

command line
awk 171

comparison operator 173
component archive file 118
compound assignment 175
compressed archive file

creating 113
displaying the contents 114
restoring selected files 114

construct, quotation marks around 57
continuation

prompt 27, 42
control structure

for loop 64
if conditional 62
while loop 64

copy
file into a file

cp shell command 148
OPENVM commands 146, 147

cp shell command
default permissions 121

CP terminal escape character
changing 21
setting to OFF 21

CP terminal line end character
changing 21
setting to OFF 21

cpio archive format 191
cpio shell command 113
current working directory 89
customization

.profile file 23
ENV variable 27
PATH variable 27
shell options 29
square brackets 20

cxx shell command 100

D
data

access 83
database concepts, POSIX 3
decrement operator 175
devnull 34
DFSMS/VM

management of BFS files 81
diff shell command 96, 105
directory

changing 90
comparing contents 96
creating 92
default permissions 92, 121
DIRPOSIX utility 5, 153
finding 96
listing contents 95
name

specifying 89
permissions

default 121
displaying 126

removing 94
working 4, 89

DIRPOSIX utility 5, 153
distributed environment

file access 7
file processing 7

distribution list 76
dot notation 90
double quotation marks

enclosing a construct 42, 57
doublebyte data

code page conversion 21
dump

nontext file 34

E
echo shell command 25
ed editor

default permissions 121
using 134

edit recovery 134
editor

ed 134
sed 140

EDITOR variable 25
effective group ID 129
effective user ID 129
embedded archive file 118
END pattern 178
ENV variable

setting 27
environment variable

_ 25
CDPATH 25
changing dynamically 24
COLUMNS 25
displaying 25
EDITOR 25
ENV

setting 27

Index 211

environment variable (continued)
FCEDIT 25
HISTFILE 25
HISTSIZE 26
HOME 26
IFS 26
LANG 26
LC_ALL 26
LC_COLLATE 26
LC_CTYPE 26
LC_MESSAGES 26
LINENO 26
MAIL 26
MAILCHECK 26
MAILPATH 26
MBOX 26
OLDPWD 26
PATH

setting 27
PS1 26
PS2 27
PWD 27
SECONDS 27
SHELL 27

ERASE CMS command 149
error

redirection 33
standard 32

escape
character

shell command 41
sequence

tables 199
escape character

cent sign xv
not recognized 18
using xv

EscChar-C 32
EscChar-Z 70
etc/profile 23
exec shell command 34
exit statement 182
expansion

preventing wildcard 30
export

variable 24, 30, 54
export shell command 54
expressions 53
external link

deleting 104

F
FCEDIT variable 25
field 168
FIFO special file 84
file

.profile file
example 23

/etc/profile 23
access

in distributed environment 7
program 112

analyzing contents 109

file (continued)
archive 112
awk program 172
back up and restore

cpio 113
pax 116
tar 114

browsing 111
Byte File System (BFS) 81
closing 34
comparing two 105
copying

cp shell command 148
OPENVM commands 146, 147

creation
mode mask 127

default permissions
ed, created with 140
XEDIT, created with 131

deleting 100
descriptor 32
displaying contents 111
editing with XEDIT

doublebyte characters 132
finding 96
formatted browsing 111
formatting 143
I/O 83
inode number 101
line 81
locking

BFS 112
login script 27
mode mask 127
moving 104
naming 99
nontext

dumping contents 34
ownership

changing 128
permissions

default 121
displaying 126

printing 143
processing in distributed environment 7
renaming 104
searching

pattern 110
string 109

sh_history 44
sorting contents

example 108
transfer

to the host 149
to the workstation 149

types
character special 84
FIFO special 84
regular 84
symbolic link 84

file name
creating 99
listing 96
portable file name character set 99

212 z/VM: z/VM 7.2 OpenExtensions User's Guide

file name (continued)
using a wildcard character 42

file system
CMS commands 87
data access 83
I/O 83
locking 88
mountable 83
permissions 121
root 83
security 121
shell commands 86

filter 38
find shell command 39, 46, 96
for loop 64, 182
foreground job

canceling 69
moving to background 68

formatting files
pr command 143

function
arithmetic 183
getline 185
passing an array to 185
string manipulation 183
user-defined 185
using 65

G
getline function 185
GID

changing 128
definition 4
primary 3

GLOBALV
OPENVM RUN 73
settings 73

grep shell command 35, 109
group, POSIX

assigning users 5
database contents 4
defining 5
ID 4
member list 4
name 4

H
hard link

deleting 104
head shell command 111
help facility 47
HISTFILE variable 25
history file

editing commands 45
history shell command 44
HISTSIZE variable 26
home directory 26
HOME variable 26
hung application

getting rid of 19

I
IBM-1027 code page 19
IBM-1047 code page 19
IBM-939 code page 19
iconv shell command 21
iconv utility, C/C++ 21
identifier

job 67
process 67

if conditional 62
if statement 182
IFS variable 26
increment operator 175
initial user program 4
inode number 101
input

redirection 33
standard 32

internal field separator 26

J
job

background
canceling 70
moving to foreground 68
stopping 70
suspended 68

control
commands 67

foreground
canceling 69
moving to background 68
stopping 70

identifier 67
status 68
stopped

resuming 70
jobs shell command 69

K
keyboard

escape sequence
tables 199

kill shell command 67, 70
KornShell 11

L
LANG variable 26
Latin 1/Open System Interconnection code page 196
LC_ALL variable 26
LC_COLLATE variable 26
LC_CTYPE variable 26
LC_MESSAGES variable 26
line 81
LINENO variable 26
link

external 84, 88, 103
hard 101
symbolic 84, 101

Index 213

ln shell command 101
locale

default 12
shell and utilities

changing the 29
login

name 91
script 27

loop
for 182
while 182

lp shell command 144
ls shell command 95, 126

M
magic number 13
MAIL variable 26
MAILCHECK variable 26
MAILPATH variable 26
mailx shell command 75
make utility

tab character 132
mask, file creation mode 127
matching operator 175
MAXCONN value 6
MBOX variable 26
member list, POSIX group 4
message

receiving 76
sending

to VM operator 76
message examples, notation used in xviii
metacharacter 40, 110
mkdir shell command

default permissions 121
mode

cp command 121
default

directory 92
directory creation 121
file creation 121, 131

ed command 121
mask

file creation 127
mkdir command 121
OPENVM PUTBFS command 121
redirection

creating a file 121
modified expansion 58
mountable Byte File System 83
MSG CMS command 75
multiple commands

; 37
&& 38
|| 38
filter 38
pipe 38

multiple-condition operator 175
mv shell command 104

N
name

file 99
login 91

named pipe 84
newline character 81
next statement 182
nohup shell command 71
notation

dot 90
notation used in message and response examples xviii
NOTE CMS command 75
number

inode 101
numeric value 170
numeric variable

built-in 179

O
octal numbers 124
od shell command 34
OLDPWD variable 26
online help 47
OPENVM CREATE DIRECTORY CMS command

default permissions 121
OPENVM CREATE DIRECTORY CMS Command 91
OPENVM GETBFS CMS command

default permissions 121
OPENVM PUTBFS CMS command

default permissions 121
OPENVM RUN command 73
OPENVM SET MASK command 121
operand

array 185
shell command 31

operation
compound assignment 175
ordering 174

operator
arithmetic 173
comparison 173
increment or decrement 175
matching 175
multiple condition 175

operator message
sending 76

option
shell command 31

option settings
shell session

displaying 30
order

arithmetic operation 174
OS/2 Extended Edition

SEND and RECEIVE programs 149
output

awk
controlling 186

redirection 33
standard 32

214 z/VM: z/VM 7.2 OpenExtensions User's Guide

P
parameter

expansion 58
positional 58
special 60

parent process 67
path 84
path name

resolution
symbolic link 85

PATH variable
setting 27

pattern
awk

ranges 178
simple 168
special 178

matching 110
pax shell command 116
PC 3270 emulation program

SEND and RECEIVE programs 149
permissions

bits 121
changing 122
cp command 121
default

directory 92
directory creation 121
file creation 121
summary 121
XEDIT 131

displaying 126
ed command 121
mkdir command 121
octal 124
OPENVM PUTBFS command 121
redirection

creating a file 121
symbolic 123

PGID 67
PID 67
pipe 38, 84
pipeline 38
placeholders 187
portable file name character set 99
positional parameter 55, 57
POSIX database concepts 3
POSIX group

assigning users 5
database contents 4
defining 5
member list 4
name 4

POSIX portable character set 197
POSIX user

database contents 3
ID 3
name 3

PPID 67
pr shell command 111, 143
print action, awk utility 171
printf action, awk utility 186
printing

printing (continued)
CMS commands 144
lp command 144

process
child 67
ending 67
group 67
identifier 67
parent 67

profile
.profile 23
/etc/profile 23

program
awk, running 171
file, awk 172
timing 47

programming 31
programs

differences in starting 73
prompt

continuation 27, 42
string 26

ps shell command 69
PS1 variable 26
PS2 variable 27
pwd shell command 89
PWD variable 27

Q
quotation marks

enclosing a construct 57

R
r shell command 44
ranges

used in a pattern 178
RECEIVE program 149
record keeping 45
records 167
recovery

XEDIT 134
redirection

controlling 30
creating a file

default permissions 121
regular expression 111, 176
regular file 84
relative path name

dot notation 90
tilde notation 90

response examples, notation used in xviii
restore

archive file
code page conversion 118
component archive files 118
cpio 113
pax 116
tar 114

component archive file 118
retrieve function key 44
return statement 66

Index 215

REXX
calling OpenExtensions services 14

rm shell command 36, 94, 100
rmdir shell command 94
root directory 4, 83
running programs

from CMS 73
from the Shell 73

S
search path

verifying 29
searching files 109
SECONDS variable 27
security

additional features, selecting 6
base product 88

sed editor
using 140

SEND program 149
set shell command 25, 29
set-group-ID bit 129
set-user-ID bit 129
setting up OpenExtensions

assigning POSIX user IDs 5
assigning users to POSIX groups 5
creating BFS file spaces 6
database concepts 3
defining POSIX user groups 5
DIRPOSIX utility 5, 153
selecting additional security features 6
specifying authorizations for POSIX query and set
functions 4

sh_history file 44
shell

code pages, supported 19
command

escape characters 41
commands

summary table 161
differences from UNIX or AIX 12
escape sequence

tables 199
exiting

with a nohup background job 71
function 65
locale

changing the 29
metacharacter 40
options

displaying settings 30
setting 29

script
executable 51
function 65
running 51

sessions 11
special characters 40
special parameters 60
variable

arithmetic calculation 53
creating 52
exporting 24, 30, 54

SHELL variable 27
simple pattern 168
single quotation marks

enclosing a construct 42, 57
socket

address 84
sort shell command 106
sorting key

example 108
special

characters 40
file 84
parameters 60
pattern 178

square brackets
customization 20
wildcard expansion 43

standard error
file descriptor 32
meaning 32
redirection 33

standard input
file descriptor 32
meaning 32
redirection 33

standard output
file descriptor 32
meaning 32
redirection 33

statement
exit 182
if 182
next 182
return 66

status
job 68

sticky bit 124
STOP signal 70
stream

closing 34
string

manipulation function 183
value 170
variable

built-in 180
stty shell command 68
su shell command 11
substitution

command 38
substring 55
superuser

switching to 11
symbolic link

deleting 104
symbolic mode 123
syntax diagrams, how to read xvi

T
tab character

awk 169
typing in XEDIT 132

tail shell command 111
tar archive format 192

216 z/VM: z/VM 7.2 OpenExtensions User's Guide

tar shell command 114
TCP/IP (Transmission Control Protocol/Internet Protocol)

File Transfer Protocol (FTP) facility 149
TELL CMS command 75
test shell command 61
tilde (~) notation 90
time shell command 47
tracked alias 36
trailing blanks 132
typeset shell command 55

U
U.S. APL code page 198
UID

changing 128
definition 3

umask shell command 127
unalias shell command 37
unnamed pipe 84
user

assigning POSIX user IDs to VM users 5
classes 121
database contents, POSIX 3
definition 121
ID, POSIX 3
name, POSIX 3

user-defined function 185
utility

definition 11

V
value

assigning to a variable 170
numeric 170
string 170

variable
assigning value 170
associating attributes 55
built-in numeric 179
built-in string 180
environment

displaying 25
ENV 27
PATH 27

exporting
.profile file 24
allexport option 30

shell
arithmetic calculation 53
creating 52
displaying definitions 55
exporting 54

W
wait shell command 71
wc shell command 109
whence shell command 29
while loop 64, 182
wildcard character

expansion

wildcard character (continued)
expansion (continued)

preventing 30
word count 109
working directory 4, 89

X
XEDIT

CAPS OFF 133
editing a file

BFS files 131
doublebyte characters 132
edit recovery 134
external data commands 133
FILE command 134
GET subcommand 134
PUT subcommand 134
tab character 132
trailing blanks 132

XEDIT subcommand
GET 134

Index 217

218 z/VM: z/VM 7.2 OpenExtensions User's Guide

IBM®

Product Number: 5741-A09

Printed in USA - Product Number: 5741-A09

SC24-6299-01

	Contents
	Figures
	Tables
	About this Document
	Intended Audience
	Conventions Used in This Document
	Escape Character Notation
	Case-Sensitivity
	Typography

	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM OpenExtensions User's Guide
	SC24-6299-01, z/VM 7.2 (September 2020)
	SC24-6299-00, z/VM 7.1 (September 2018)

	Part 1. Setting Up OpenExtensions
	Chapter 1. Setting Up OpenExtensions
	Understanding the POSIX Database Concepts
	POSIX User Database
	POSIX Group Database
	POSIX Set and Query Functions
	DIRPOSIX Utility

	Assigning POSIX User IDs to VM Users
	Defining POSIX User Groups
	Assigning VM Users to POSIX User Groups
	Selecting Additional Security Features
	Creating BFS File Spaces
	Additional Considerations

	Part 2. The OpenExtensions Shell
	Chapter 2. An Introduction to the OpenExtensions Shell
	The Shell Session
	The Shell Commands
	The Locale in the Shell
	Porting Yourself from a UNIX or AIX Environment
	Interoperability
	Parallels Between the CMS and Shell Environments
	Scanning Files and Manipulating Strings
	Editing
	Job Control
	Background Jobs
	Programming
	Data Management

	Security

	Chapter 3. Using the OpenExtensions Shell
	Using CMS
	Understanding the 3270 Screen
	Limitations For Display of Data On the Terminal
	The Shell Run-time Requirements
	Exiting the Shell
	Getting Rid of a Hung Application
	Understanding Code Page Conversion
	Customizing the Square Brackets on Your Keyboard

	When Do You Need to Convert between Code Pages?
	Naming Files Using the POSIX Portable File Name Character Set
	Default Escape character and LINEDEL
	Default CP Terminal Escape Character and the Shell
	Default CP Terminal Line End Character and the Shell

	Chapter 4. Customizing the Shell
	Customizing Your .profile
	Quoting Variable Values
	Changing Variable Values Dynamically

	Understanding Environment Variables
	Customizing Your Shell Environment: The ENV Variable
	Customizing the Search Path for Commands: The PATH Variable
	Adding Your Working Directory to the Search Path
	Checking the Search Path Used for a Command

	Changing the Locale: The LC_ Variables
	Setting Options for a Shell Session
	Exporting Variables
	Controlling Redirection
	Preventing Wildcard Character Expansion
	Displaying Input from a File
	Displaying Current Option Settings

	Chapter 5. Working with Shell Commands
	Specifying Shell Command Options and Operands
	Specifying Options with Accompanying Operands
	Help for Shell Command Usage
	Interrupting a Shell Command
	Understanding Standard Input, Standard Output, and Standard Error
	Redirecting Command Output to a File
	Redirecting Input from a File
	Redirecting Error Output to a File
	Closing a File
	Dumping Nontext Files to Standard Output
	Setting Up an Alias for a Command
	Defining an Alias
	Redefining an Alias for a Session
	Setting Up an Alias for a Particular Version of a Command
	Using Alias Tracking
	Turning Off an Alias

	Combining Commands
	Using a Semicolon (;)
	Using && or ||
	Using a Pipe

	Using Substitution in Commands
	Using the find Command in Command Substitution Constructs

	Characters That Have Special Meaning to the Shell
	Used with Commands
	Used in File Names
	Redirecting Input and Output

	Using a Special Character Without Its Special Meaning
	The Backslash (\)
	A Pair of Single Quotation Marks (' ')
	A Pair of Double Quotation Marks (" ")

	Using a Wildcard Character to Specify File Names
	The * Character
	The ? Character
	The Square Brackets []

	Retrieving Previously Entered Commands
	Using the Retrieve Keys
	Retrieving Commands from the History File
	Editing Commands from the History File

	Using Record-Keeping Commands
	Finding Elements in a File and Presenting Them in a Specific Format
	Timing Programs
	Online Help
	Example: Getting Help for OPENVM Commands
	Example: Getting Help for OSHELL cp

	Chapter 6. Writing Shell Scripts
	Running a Shell Script
	Using Variables
	Creating a Variable
	Calculating with Variables
	Exporting Variables
	Associating Attributes with Variables
	Displaying Currently Defined Variables

	Using Positional Parameters — The $N Construct
	Using Quotation Marks to Enclose a $N Construct in a Shell Script

	Using Parameter and Variable Expansion
	Using Special Parameters in Commands and Shell Scripts
	Using Control Structures
	Using test to Test Conditions
	The if Conditional
	The while Loop
	The for Loop
	Combining Control Structures

	Using Functions

	Chapter 7. Using Job Control in the Shell
	Running Several Jobs at the Same Time (Foreground and Background)
	Starting a Job in the Background with an Ampersand (&)
	Moving a Job to the Background
	Moving a Job to the Foreground

	Checking the Status of Jobs
	Using the jobs Command
	Using the ps Command

	Canceling a Job
	Canceling a Foreground Job
	Canceling a Background Job

	Stopping and Resuming a Job
	Stopping a Foreground Job
	Stopping a Background Job
	Resuming a Stopped Job

	Delaying a Command
	Running a Job in the Background after Exiting

	Chapter 8. Running OpenExtensions Applications
	Chapter 9. Communicating with Other Users
	Sending Messages
	To Another User
	To a Distribution List
	To a VM Operator

	Receiving Messages from Other Users
	Replying to Mail
	Saving and Deleting Mail
	Ending the mailx Program

	Part 3. The File System
	Chapter 10. An Introduction to the Byte File System
	The Root File System and Mountable Byte File System
	Directories
	Files
	Files Not in the BFS

	Path and Path Name
	Requirement for a Fully-Qualified Path Name
	Resolving a Symbolic Link in a Path Name
	External Links

	Using Commands to Work with Directories and Files
	Where You Can Enter a CMS Command
	Locking
	External Links
	Security for the File System

	Chapter 11. Working with Directories
	The Working Directory
	Displaying the Name of Your Working Directory
	Changing Directories
	Using Notations for Relative Path Names
	Dot Notation
	Tilde Notation
	Example

	Creating a Directory
	Using CMS
	Using the Shell

	Removing a Directory
	Using CMS
	Using the Shell

	Listing Directory Contents
	Using CMS
	Using the Shell

	Comparing Directory Contents
	Using the Shell

	Finding a Directory or File
	Using the Shell

	Chapter 12. Working with Files
	Using an Editor to Create a File
	Naming Files
	Processing in Uppercase and Lowercase

	Deleting a File
	Using CMS
	Using the Shell

	Identifying a File by Its Inode Number
	Using CMS
	Using the Shell

	Creating Links
	Using CMS
	Using the Shell
	Creating a Hard Link
	Using CMS
	Using the Shell
	Creating a Symbolic Link
	Using CMS
	Using the Shell

	Creating an External Link

	Deleting Links
	Using CMS
	Using the Shell

	Renaming or Moving a File or Directory
	Using CMS
	Using the Shell

	Comparing Files
	Using CMS
	Using the Shell

	Sorting File Contents
	Using CMS
	Using the Shell
	Using Sorting Keys — An Example

	Counting Lines, Words, and Bytes in a File
	Using CMS
	Using the Shell

	Searching Files by Using Pattern Matching
	Using CMS
	Using the Shell
	Patterns
	Regular Expression

	Browsing Files
	Browsing Files Without Formatting
	Browsing Files with Formatting

	Simultaneous Access to a File
	Backing Up and Restoring Files: The Options
	Using cpio to Back Up and Restore Files
	Backing Up a Complete Directory
	Using the Shell

	Restoring a Complete Directory from a VM File
	Working with a Compressed Archive
	Viewing the Contents of an Archive
	Restoring Selected Files from an Archive

	Using tar to Back Up and Restore Files
	Backing Up a Complete Directory into a CMS Record File
	Restoring a Complete Directory from a CMS Record File
	Viewing the Contents of an Archive
	Restoring Selected Files from an Archive
	Restoring Files Interactively
	Appending to an Archive
	Backing Up Files Created over a Certain Number of Days

	Using pax to Back Up and Restore Files
	Backing Up a Complete Directory into a CMS Record File
	Restoring a Complete Directory from a CMS Record File
	Working with a Compressed Archive
	Viewing the Contents of an Archive
	Specifying a Format for Backup
	Restoring Selected Files from an Archive
	Restoring All But Selected Files from Backup
	Converting Between Code Pages
	Restoring an ASCII Archive File That Has Component Archive Files

	Chapter 13. Handling Security for Your Files
	Default Permissions Set by the System
	Changing Permissions for Files and Directories
	Using CMS
	Using the Shell
	Using a Symbolic Mode to Specify Permissions
	Using Octal Numbers to Specify Permissions with the Shell
	Position 1
	Positions 2, 3, and 4

	Displaying File and Directory Permissions
	Using CMS
	Using the Shell

	Setting the File Mode Creation Mask
	Using CMS
	Using the Shell

	Changing the Owner ID or Group ID Associated with a File
	Using CMS
	Using the Shell

	Temporarily Changing the User ID or Group ID during Execution
	Using CMS
	Using the Shell

	Chapter 14. Editing Files
	Using XEDIT to Edit a BFS File
	Using XEDIT
	Support for Doublebyte Characters
	Code Page Conversion
	Typing Tabs using XEDIT
	Preserving Trailing Blanks in Files
	Working with Lowercase or Mixed-Case Files
	Accessing a File to Edit
	Working with Other Files While Editing a File
	Using Edit Macros
	Copying into a File
	Moving Data into a File
	Replacing a File or Creating a File with Data from a File
	Editing Another File During an Edit Session

	Edit Recovery

	Using the ed Editor
	Using the Shell
	Creating and Saving a Text File
	Editing an Existing File
	Identifying Line Numbers and Changing Your Position in the Buffer
	Changing Position Using Numbers
	Changing Position Using a Search String (Regular Expression)

	Appending One File to Another
	Displaying the Current Line in the Edit Buffer
	Changing a Character String
	Inserting Text at the Beginning or End of a Line
	Deleting Lines of Text
	Changing Lines of Text
	Inserting Lines of Text
	Copying Lines of Text
	Moving Lines of Text
	Undoing a Change
	Entering a Shell Command While Using ed
	Ending an ed Edit Session
	Default Permissions

	Using sed to Edit a BFS File
	Using the Shell

	Chapter 15. Printing Files
	Formatting Files for Online Browsing or Printing
	Using the Shell
	Printing Requests in Shell Scripts

	Printing with the lp Command
	Using the Shell

	Printing with CMS Commands
	Using CMS

	Chapter 16. Copying Files
	Copying a CMS Record File into a BFS File
	OPENVM PUTBFS
	Example: Using OPENVM PUTBFS with a CMS Record File

	Copying a BFS File to a CMS Record File
	OPENVM GETBFS

	Copying a BFS File to Another BFS File

	Chapter 17. Transferring Files between Systems
	Transferring to the Byte File System
	Transferring a File to the Workstation
	Transporting an Archive File on Tape or Diskette
	Putting an Archive File into a Byte File System
	Step 1. Transferring the Archive File to a Record File
	From a Workstation
	From a Tape Drive on Your VM System
	Working at VM

	Step 2. Copying the File into the Byte File System

	Sending an Archive File to Others
	Option 1. Copying to a Diskette or Tape at a Workstation
	Option 2. Transferring the Archive File to a Tape at the Host

	Appendix A. DIRPOSIX Utility
	Appendix B. OpenExtensions Shell Command Summary
	General Use
	Controlling Your Environment
	Managing Directories
	Managing Files
	Printing Files
	Computing and Managing Logic
	Controlling Processes
	Writing Shell Scripts
	Developing or Porting Application Programs
	Communicating with the System or Other Users
	Working with Archives

	Appendix C. Using awk
	Data Files
	Records
	Fields

	The Shape of a Program
	Simple Patterns
	Using Blanks and Horizontal Tabs
	Applying More Than One Instruction
	Assigning Values to Variables
	String Values
	Numeric Values
	Using the print Action for Output

	Running awk Programs
	The awk Command Line
	Program Files
	Sources of Data

	Operators
	Comparison Operators
	Arithmetic Operators
	Operation Ordering

	Compound Assignments
	Increment and Decrement Operators
	Matching Operators
	Multiple-Condition Operators

	Regular Expressions
	Pattern Ranges
	Using Special Patterns
	Built-in Variables
	Built-in Numeric Variables
	Built-in String Variables

	Statements and Loops
	The if Statement
	The while Loop
	The for Loop
	The next Statement
	The exit Statement

	Functions
	Arithmetic Functions
	String Manipulation Functions
	User-Defined Functions
	Passing an Array to a Function
	The Getline Function

	Running System Commands
	Controlling awk Output
	Formatting the Output
	Placeholders
	Escape Sequences

	Appendix D. The Format of Archive Files: cpio and tar
	cpio Format
	tar Format
	Description of the Header Fields

	Appendix E. Code Pages and the POSIX Portable Character Set
	Latin 1/Open System Interconnection Code Page 01047 (IBM-1047)
	POSIX Portable Character Set 00103
	U.S. APL Code Page 00293

	Appendix F. Escape Sequences
	Escape Sequences for Portable Characters Not on Your Keyboard
	Escape Sequences for Control Characters

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement
	Acknowledgments

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Additional Publications

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

